This is the manual for VIRTINS® Multi-Instrument. It contains manuals for:

- VIRTINS® Oscilloscope
- VIRTINS® Spectrum Analyzer
- VIRTINS® Signal Generator
- VIRTINS® Multimeter
- VIRTINS® Data Logger
- VIRTINS® Spectrum 3D Plot
- VIRTINS® Device Test Plan
- VIRTINS® LCR Meter
- VIRTINS® DDP Viewer

If you have only purchased a subset of the full functions, then only the relevant portions of this document are applicable.

Note: VIRTINS TECHNOLOGY reserves the right to make modifications to this manual at any time without notice. This manual may contain typographical errors.
TABLE OF CONTENTS

1.1 OVERVIEW ... 12
1.2 SYSTEM REQUIREMENT .. 24
1.3 QUICK START GUIDE .. 25
 1.3.1 Start Multi-Instrument .. 25
 1.3.1.1 Default Device Selection ... 25
 1.3.1.2 Default Skin Selection .. 26
 1.3.1.3 Run Multiple Instances ... 26
 1.3.2 Screen Layout and Components .. 26
 1.3.3 Change ADC/DAC device .. 34
 1.3.4 Basic operations ... 34
1.4 INPUT & OUTPUT CONNECTION FOR SOUND CARD BASED SYSTEMS .. 35
1.5 SPECIFICATIONS .. 37
 1.5.1 VIRTINS Oscilloscope .. 37
 1.5.2 VIRTINS Spectrum Analyzer .. 40
 1.5.3 VIRTINS Signal Generator (Sweep/Arbitrary/Function/Noise/Burst Generator) 42
 1.5.4 VIRTINS Multimeter .. 43
 1.5.5 VIRTINS Data Logger .. 44
 1.5.6 VIRTINS Spectrum 3D Plot ... 45
 1.5.7 VIRTINS Device Test Plan ... 45
 1.5.8 VIRTINS LCR Meter .. 46
 1.5.9 VIRTINS DDP Viewer .. 47
1.6 SIGNAL FLOW BLOCK DIAGRAM .. 48
1.7 PRECAUTIONS ... 50
2 OSCILLOSCOPE .. 51
2.1 OVERVIEW ... 51
2.2 TRIGGER PARAMETERS ... 52
 2.2.1 Trigger Mode .. 52
 2.2.1.1 Auto .. 53
 2.2.1.2 Normal .. 53
 2.2.1.3 Single .. 53
 2.2.1.4 Slow ... 53
 2.2.2 Trigger Source ... 54
 2.2.3 Trigger Edge .. 54
 2.2.4 Trigger Level ... 55
 2.2.5 Trigger Delay .. 55
 2.2.6 Trigger Frequency Rejection .. 55
2.3 SAMPLING PARAMETERS ... 56
 2.3.1 Sampling Frequency .. 57
 2.3.2 Sampling Channels .. 57
 2.3.3 Sampling Bit Resolution .. 58
 2.3.4 Record Length per Sweep .. 58
2.4 MISCELLANEOUS PARAMETERS .. 59
 2.4.1 Invert Input Signal ... 59
 2.4.2 Zeroing .. 60
 2.4.3 Windows Recording Control ... 60
 2.4.3.1 Recording Control before Windows Vista ... 60
 2.4.3.1.1 Sound Card Selection .. 61
 2.4.3.1.2 Input Source Selection .. 61
 2.4.3.1.3 Input Gain Adjustment ... 62
 2.4.3.2 Recording Control under Windows Vista ... 62
 2.4.3.2.1 Input Endpoint Selection .. 64
 2.4.3.2.2 Input Gain Adjustment ... 64
2.4.4 Windows Volume Control ... 65
 2.4.4.1 Volume Control before Windows Vista .. 65
 2.4.4.1.1 Sound Card Selection .. 65
 2.4.4.1.2 Output Source Selection .. 65
 2.4.4.1.3 Output Volume Adjustment ... 65
 2.4.4.2 Volume Control under Windows Vista .. 65
 2.4.4.2.1 Output Endpoint Selection ... 67

www.virtins.com Copyright © 2006-2018 Virtins Technology
2.4.4.2.2 Output Source Selection ... 67
2.4.4.2.3 Output Volume Adjustment ... 67
2.4.5 Waveform Play .. 68
2.4.6 Waveform Cyclic Play ... 68
2.4.7 Coupling Type for ADC Channels A & B .. 68
2.4.8 Range for ADC Channels A & B .. 68
2.4.9 Current Switch Position for Probes A & B ... 68
2.4.10 Input Peak Level Indicator for ADC Channels A & B 69

2.5 VIEW PARAMETERS .. 69

2.5.1 Sweep Time (T) .. 69
2.5.2 Sweep Time Multiplier .. 71
2.5.3 Channel A Display Range ... 71
2.5.4 Channel A Multiplier .. 73
2.5.5 View Type ... 74
2.5.5.1 A&B .. 74
2.5.5.2 A+B .. 74
2.5.5.3 A-B .. 74
2.5.5.4 A×B .. 74
2.5.5.5 A/B (XY Mode, Lissajous Pattern) ... 75
2.5.6 Channel B Display Range ... 76
2.5.7 Channel B Multiplier .. 78

2.6 MENU .. 78

2.6.1 File SubMenu .. 79
2.6.1.1 New (File SubMenu) (ALT-F-N, CTRL-N) 79
2.6.1.2 Open (File SubMenu) (ALT-F-O, CTRL-O) 79
2.6.1.3 Open Frame by Frame (File SubMenu) (ALT-F-F) 80
2.6.1.4 Import (File SubMenu) (ALT-F-I) .. 81
2.6.1.5 Combine (File SubMenu) (ALT-F-B) ... 82
2.6.1.6 Extract (File SubMenu) (ALT-F-T) ... 83
2.6.1.7 Close (File SubMenu) (ALT-F-C) .. 83
2.6.1.8 Save (File SubMenu) (ALT-F-S, CTRL-S) 83
2.6.1.9 Save As (File SubMenu) (ALT-F-A) ... 83
2.6.1.10 Oscilloscope Export (File SubMenu) (ALT-F-E) 84
2.6.1.11 Oscilloscope Print (File SubMenu) (ALT-F-P, CTRL-P) 84
2.6.1.12 Oscilloscope Print Preview (File SubMenu) (ALT-F-V) 84
2.6.1.13 Recent File (File SubMenu) ... 84
2.6.1.14 Exit (File SubMenu) (ALT-F-X) .. 84

2.6.2 Setting SubMenu .. 84
2.6.2.0 Restore to Factory Default (Setting SubMenu) (ALT-F-U) 85
2.6.2.1 ADC Device (Setting SubMenu) (ALT-S-A) 85
2.6.2.2 DAC Device (Setting SubMenu) (ALT-S-E) 87
2.6.2.3 Calibration (Setting SubMenu) (ALT-S-C) 88
2.6.2.3.1 Sound Card Input Calibration Factor .. 89
2.6.2.3.2 Output Calibration Factor ... 90
2.6.2.3.3 Probe Calibration Factor .. 91
2.6.2.3.4 Input DC offset ... 91
2.6.2.3.5 0dB Reference Vr ... 91
2.6.2.3.6 Frequency Voltage Conversion Factor 92
2.6.2.3.7 Latency for Synchronized Output/Input 92
2.6.2.3.8 Sound Card Input Status ... 93
2.6.2.3.9 Sensor Sensitivity and Unit .. 94
2.6.2.3.10 Load Factor for Power Calculation .. 94
2.6.2.3.11 Others .. 94
2.6.2.4 Display (Setting SubMenu) (ALT-S-D) .. 95
2.6.2.4.1 Display Colors ... 95
2.6.2.4.2 Miscellaneous .. 96
2.6.2.4.3 Language ... 97
2.6.2.4.4 Font Size ... 97
2.6.2.4.5 Refresh Delay .. 97
2.6.2.4.6 Roll Width ... 97
2.6.2.4.7 Frame Width & Duration .. 97
2.6.2.4.8 Number of Records per Log File ... 97
2.6.2.4.9 Line Width on Printer ... 97
2.6.2.4.10 Others ... 98
2.6.2.5 Note (Setting SubMenu) (ALT-S-N) .. 98
VIRTINS® Multi-Instrument 3.8 Manual

2.6.2.6.1 Device Category ..99
2.6.2.6.2 Device Model ..100
2.6.2.6.3 Auto Detect & Fill ..102
2.6.2.6.4 Others ..102
2.6.2.7 DAC Device Database (Setting SubMenu) (ALT-S-I) ..102
2.6.2.7.1 Device Category ..105
2.6.2.7.2 Device Model ..105
2.6.2.7.3 Auto Detect & Fill ..105
2.6.2.7.4 Others ..105
2.6.2.8 Oscilloscope Processing (Setting SubMenu) (ALT-S-G) ..106
2.6.2.8.1 Digital filtering ...106
2.6.2.8.1.1 None ..107
2.6.2.8.1.2 Low Pass ..107
2.6.2.8.1.3 High Pass ..108
2.6.2.8.1.4 Band Pass ..108
2.6.2.8.1.5 Band Stop ...108
2.6.2.8.1.6 Arbitrary ..108
2.6.2.8.1.7 Remove DC ..109
2.6.2.8.1.8 Rectification (Detection) ..110
2.6.2.8.2 Inter-frame Processing ..111
2.6.2.8.2.1 Linear Average ..111
2.6.2.8.2.2 Exponential Average ...111
2.6.2.8.3 Demodulation ..111
2.6.2.8.3.1 AM Demodulation ...112
2.6.2.8.3.2 FM Demodulation ...112
2.6.2.8.3.3 PM Demodulation ..113
2.6.2.8.4 Time Delay Removal ...114
2.6.2.9 Oscilloscope Y Scale (Setting SubMenu) (ALT-S-I) ...116
2.6.2.10 Oscilloscope Chart Options (Setting SubMenu) (ALT-S-O) ...117
2.6.2.10.1 Chart Type ..118
2.6.2.10.2 Line Width ..118
2.6.2.10.3 Display Mode ...118
2.6.2.10.4 Persistence ...121
2.6.2.10.5 Interpolation Mode ..123
2.6.2.11 Oscilloscope Reference (Setting SubMenu) (ALT-S-R) ..125
2.6.2.12 Save Current Panel Setting as Default (Setting SubMenu) (ALT-S-F)128
2.6.2.13 Save Current Panel Setting (Setting SubMenu) (ALT-S-S) ...128
2.6.2.14 Load Panel Setting (Setting SubMenu) (ALT-S-L) ...129
2.6.2.15 Configure Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-P)129
2.6.2.16 Show Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-H) ..130
2.6.2.17 Change Password (Setting SubMenu) (ALT-S-W) ...130
2.6.3 Instrument SubMenu ..131
2.6.3.1 Run (Instrument SubMenu) (ALT-I-R, CTRL-R or Enter) ...131
2.6.3.2 Oscilloscope (Instrument SubMenu) (ALT-I-O) ..131
2.6.3.3 Spectrum Analyzer (Instrument SubMenu) (ALT-I-S) ...131
2.6.3.4 Multimeter (Instrument SubMenu) (ALT-I-M) ...132
2.6.3.5 Spectrum 3D Plot (Instrument SubMenu) (ALT-I-D) ...132
2.6.3.6 Signal Generator (Instrument SubMenu) (ALT-I-G) ...132
2.6.3.7 Device Test Plan (Instrument SubMenu) (ALT-I-P) ...132
2.6.3.8 Data Logger (Instrument SubMenu) (ALT-I-L) ..132
2.6.3.9 DDP Viewer (Instrument SubMenu) (ALT-I-F) ..132
2.6.4 Window SubMenu ...132
2.6.4.1 Cascade (Window SubMenu) (ALT-W-C) ..133
2.6.4.2 Tile Horizontally (Window SubMenu) (ALT-W-H) ...133
2.6.4.3 Tile Vertically (Window SubMenu) (ALT-W-V) ..133
2.6.5 Help SubMenu ...133
2.6.5.2 Help Topics (Help SubMenu) (ALT-H-H or F1) ..134
2.6.5.3 Software Manual (Help SubMenu) (ALT-H-S) ..134
2.6.5.4 Hardware Manual (Help SubMenu) (ALT-H-M) ..134
2.6.5.5 About (Help SubMenu) (ALT-H-A) ...134
2.7 CURSOR READER AND MARKERS ..134
2.7.1 Cursor Reader ...134
2.7.2 Marker ...135
2.7.3 Combined Use of Marker and Cursor Reader ..136
3.2 VIEW PARAMETERS

3.2.1 View Parameters for Amplitude Spectrum Display

3.2.1.1 Frequency Range (F) ... 144
3.2.1.2 Frequency Multiplier .. 144
3.2.1.3 Channel A Display Range ... 146
3.2.1.3.1 Absolute Display Mode .. 146
3.2.1.3.1.1 Linear Scale .. 147
3.2.1.3.1.2 Logarithmic Scale .. 147
3.2.1.3.2 Relative Display Mode ... 148
3.2.1.3.2.1 Linear Scale ... 148
3.2.1.3.2.2 Logarithmic Scale (dBr) ... 148
3.2.1.4 Channel A Multiplier .. 149
3.2.1.5 Channel B Display Range ... 149
3.2.1.5.1 Absolute Display Mode .. 149
3.2.1.5.1.1 Linear Scale .. 149
3.2.1.5.1.2 Logarithmic Scale .. 149
3.2.1.5.2 Relative Display Mode .. 151
3.2.1.5.2.1 Linear Scale .. 151
3.2.1.5.2.2 Logarithmic Scale (dBr) .. 151
3.2.1.6 Channel B Multiplier .. 152
3.2.1.7 FFT Size ... 152
3.2.1.8 Window Function ... 155
3.2.1.9 Window Overlap Percentage ... 163
3.2.1.10 Impedance Measurement Mode ... 163

3.2.2 View Parameters for Phase Spectrum Display

3.2.2.1 Frequency Range (F) ... 177
3.2.2.2 Frequency Multiplier .. 177
3.2.2.3 Channel A Display Range ... 178
3.2.2.4 Channel A Multiplier .. 178
3.2.2.5 Channel B Display Range ... 178
3.2.2.6 Channel B Multiplier .. 178
3.2.2.7 FFT Size ... 178
3.2.2.8 Window Function ... 178
3.2.2.9 Window Overlap Percentage ... 178

3.2.3 View Parameters for Auto Correlation Function Display

3.2.3.1 Time Delay Range (dT) .. 179
3.2.3.2 Time Delay Multiplier .. 181
3.2.3.3 Channel A Display Range ... 181
3.2.3.4 Channel A Multiplier .. 181
3.2.3.5 Channel B Display Range ... 181
3.2.3.6 Channel B Multiplier .. 181
3.2.3.7 FFT Size ... 181
3.2.3.8 Window Function ... 181
3.2.3.9 Window Overlap Percentage ... 181

3.2.4 View Parameters for Cross Correlation Function Display

3.2.4.1 Time Delay Range (dT) .. 182
3.2.4.2 Time Delay Multiplier .. 183
3.2.4.3 Channel A&B Display Range ... 183
3.2.4.4 Channel A&B Multiplier .. 183
3.2.4.5 Channel B Display Range ... 183
3.2.4.6 Channel B Multiplier .. 183
3.2.4.7 FFT Size ... 183
3.2.4.8 Window Function ... 183
3.2.4.9 Window Overlap Percentage ... 183
3.2.5 View Parameters for Coherence / Non-Coherence Function Display .. 183
 3.2.5.1 Frequency Range (F) .. 185
 3.2.5.2 Frequency Multiplier .. 185
 3.2.5.3 Channel A&B Display Range ... 185
 3.2.5.4 Channel A&B Multiplier .. 186
 3.2.5.5 Channel B Display Range ... 186
 3.2.5.6 Channel B Multiplier .. 186
 3.2.5.7 FFT Size .. 186
 3.2.5.8 Window Function .. 186
 3.2.5.9 Window Overlap Percentage ... 186
 3.2.5.10 Non-Coherence Function and Total Non-Coherent Distortion and Noise .. 186
3.2.6 View Parameters for Transfer Function Display / Impedance Analyzer ... 188
 3.2.6.1 Frequency Range (F) .. 191
 3.2.6.2 Frequency Multiplier .. 191
 3.2.6.3 Channel A Display Range ... 191
 3.2.6.4 Channel A Multiplier .. 191
 3.2.6.5 Channel B Display Range ... 191
 3.2.6.6 Channel B Multiplier .. 191
 3.2.6.7 FFT Size .. 192
 3.2.6.8 Window Function .. 192
 3.2.6.9 Window Overlap Percentage ... 192
 3.2.6.10 Impedance Analyzer Mode ... 192
3.2.7 View Parameters for Impulse Response Display ... 196
 3.2.7.1 Time Range (T) .. 199
 3.2.7.2 Time Multiplier ... 201
 3.2.7.3 Channel A Display Range ... 201
 3.2.7.4 Channel A Multiplier .. 201
 3.2.7.5 Channel B Display Range ... 201
 3.2.7.6 Channel B Multiplier .. 201
 3.2.7.7 FFT Size .. 201
 3.2.7.8 Window Function .. 202
 3.2.7.9 Window Overlap Percentage ... 202
3.3 MENU .. 202
 3.3.1 File SubMenu .. 202
 3.3.1.1 New (File SubMenu) (ALT-F-N, CTRL-N) ... 202
 3.3.1.2 Open (File SubMenu) (ALT-F-O, CTRL-O) .. 203
 3.3.1.3 Open Frame by Frame (File SubMenu) (ALT-F-F) 203
 3.3.1.4 Import (File SubMenu) (ALT-F-I) ... 203
 3.3.1.5 Combine (File SubMenu) (ALT-F-B) .. 203
 3.3.1.6 Extract (File SubMenu) (ALT-F-T) ... 203
 3.3.1.7 Close (File SubMenu) (ALT-F-C) ... 203
 3.3.1.8 Save (File SubMenu) (ALT-F-S, CTRL-S) ... 203
 3.3.1.9 Save As (File SubMenu) (ALT-F-A) ... 203
 3.3.1.10 Spectrum Analyzer Export (File SubMenu) (ALT-F-E) 203
 3.3.1.11 Spectrum Analyzer Print (File SubMenu) (ALT-F-P, CTRL-P) 204
 3.3.1.12 Spectrum Analyzer Print Preview (File SubMenu) (ALT-F-V) 204
 3.3.1.13 Recent File (File SubMenu) ... 204
3.3.2 Setting SubMenu ... 204
 3.3.2.1 ADC Device (Setting SubMenu) (ALT-S-A) .. 205
 3.3.2.2 DAC Device (Setting SubMenu) (ALT-S-D) .. 205
 3.3.2.3 Calibration (Setting SubMenu) (ALT-S-C) ... 205
 3.3.2.4 Display (Setting SubMenu) (ALT-S-D) .. 205
 3.3.2.5 Note (Setting SubMenu) (ALT-S-N) .. 205
 3.3.2.6 DAC Device Database (Setting SubMenu) (ALT-S-E) 205
 3.3.2.7 ADC Device Database (Setting SubMenu) (ALT-S-B) 205
 3.3.2.8 DAC Device Database (Setting SubMenu) (ALT-S-G) 205
 3.3.2.8.1 Intra-Frame Processing .. 206
 3.3.2.8.1.1 Remove DC .. 207
 3.3.2.8.1.2 Compensation ... 207
 3.3.2.8.1.2.1 Frequency Compensation ... 207
 3.3.2.8.1.2.2 Gain and Phase Compensation ... 208
 3.3.2.8.1.3 Frequency Weighting ... 209
 3.3.2.8.1.4 Smoothing via Moving Average ... 209
 3.3.2.8.1.5 Parameter Measurements before Inter-Frame Processing 210
4 SIGNAL GENERATOR ... 242
 3.3.2.9 Spectrum Analyzer X Scale (Setting SubMenu) (ALT-S-X) .. 235
 3.3.2.10 Spectrum Analyzer Y Scale (Setting SubMenu) (ALT-S-Y) ... 236
 3.3.2.11 Spectrum Analyzer Chart Options (Setting SubMenu) (ALT-S-O) 237
 3.3.2.12 Spectrum Analyzer Reference (Setting SubMenu) (ALT-S-R) .. 238
 3.3.2.13 Save Current Panel Setting as Default (Setting SubMenu) (ALT-S-F) 239
 3.3.2.14 Save Current Panel Setting (Setting SubMenu) (ALT-S-S) ... 240
 3.3.2.15 Load Panel Setting (Setting SubMenu) (ALT-S-L) .. 241
 3.3.2.16 Configure Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-P) 242
 3.3.2.17 Show Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-H) 243
 3.3.2.18 Change Password (Setting SubMenu) (ALT-S-W) ... 244
 3.3.3 Instrument SubMenu ... 239
 3.3.4 Window SubMenu .. 239
 3.3.5 Help SubMenu ... 239
 3.4 CURSOR READER AND MARKERS ... 244
 3.5 PEAK VALUES ... 239
 3.6 CONTEXT MENU .. 239

4 SIGNAL GENERATOR ... 242
 4.1 OVERVIEW ... 242
 4.2 OUTPUT SAMPLING PARAMETERS ... 243
 4.2.1 Sampling Frequency ... 244
 4.2.2 Sampling Channels ... 244
 4.2.3 Sampling Resolution .. 245
 4.3 OUTPUT SIGNAL PARAMETERS .. 245
 4.3.1 Output Waveform .. 246
 4.3.1.1 None ... 246
 4.3.1.2 Sine .. 246
 4.3.1.3 Rectangle .. 246
 4.3.1.4 Triangle .. 247
 4.3.1.5 Saw Tooth .. 247
 4.3.1.6 White Noise ... 248
 4.3.1.7 Pink Noise ... 248
 4.3.1.8 MultiTones ... 249
 4.3.1.9 Manual Configuration ... 251
 4.3.1.10 Automatic Configuration .. 252
 4.3.1.11 Waveform Library (WFLibrary) ... 255
 4.3.1.12 Waveform Library File (*.wfl) ... 255
 4.3.1.13 BitPerfect Library File (*.bpl) .. 256
 4.3.1.14 J-Test Signal for Jitter Tests ... 257
 4.3.1.15 MLS ... 258
 4.3.1.16 DTMF .. 259
 4.3.1.17 Unit Impulse ... 259
 4.3.1.18 Unit Step ... 260
 4.3.1.19 Wave File ... 261
 4.3.2 Output Frequency .. 262
 4.3.3 Output Amplitude .. 263
 4.3.4 Output Phase Difference ... 264
4.3.5 Output DC Offset...263
4.3.6 Waveform Details..263
4.4 SWEEP PARAMETERS...263
 4.4.1 Frequency Sweep...264
 4.4.1.1 Start Frequency...264
 4.4.1.2 End Frequency..264
 4.4.2 Amplitude Sweep...264
 4.4.2.1 Start Amplitude...264
 4.4.2.2 End Amplitude..264
 4.4.3 Sweep Mode...264
4.5 OUTPUT DURATION/LOOP..266
4.6 OUTPUT SIGNAL PROCESSING...266
 4.6.1 Output Mask/Phase Lock...266
 4.6.2 Output Fade In / Out..268
 4.6.3 Output Modulation...269
 4.6.3.1 Amplitude Modulation (AM)..269
 4.6.3.2 Frequency Modulation (FM)..269
 4.6.3.3 Phase Modulation (PM)...269
4.7 MUSICAL SCALE...270
4.8 SAVE FUNCTION..270
4.9 RUN/STOP..271
4.10 LOOPBACK MODE..272
 4.10.1 No Loopback..272
 4.10.2 \(iA = oA, iB = oB\)..272
 4.10.3 \(iA = oA, iB = oA\)..273
 4.10.4 \(iB = oA\)..273
 4.10.5 Sync. No Loopback...273
 4.10.6 Sync. \(iB = oA\)...273
 4.10.7 Sync. \(iB<--oA\)...274
4.11 DDS MODE VS STREAMING MODE...274
5 MULTIMETER...275
 5.1 OVERVIEW..275
 5.2 VIEW PARAMETERS..276
 5.2.1 RMS..276
 5.2.2 dBV..276
 5.2.3 dBu..276
 5.2.4 dB..276
 5.2.5 dB(A)...277
 5.2.6 dB(B)...277
 5.2.7 dB(C)...277
 5.2.8 Frequency Counter...277
 5.2.9 RPM..279
 5.2.10 Counter..279
 5.2.11 Duty Cycle..279
 5.2.12 F/V..279
 5.2.13 Cycle RMS...280
 5.2.14 Cycle Mean...280
 5.2.15 Pulse Width..280
 5.2.16 Vibrometer...280
 5.3 MENU...281
6 DATA LOGGER...282
 6.1 OVERVIEW..282
 6.2 CONFIGURATION..283
 6.2.1 Derived Data Point and User Defined Data Point..283
 6.2.2 Legend...283
 6.2.3 Logging Method...291
 6.2.4 Log File Name..292
 6.3 CONTEXT MENU..293
 6.3.1 X Scale...294
6.3.2 Y Scale ... 295
6.3.3 Chart Options ... 296
6.3.4 Copy As Bitmap ... 296
6.3.5 Copy As Text .. 296
6.3.6 Export ... 296
6.3.7 Print ... 296
6.4 CURSOR READER AND MARKERS .. 297

7 SPECTRUM 3D PLOT .. 298

7.1 OVERVIEW ... 298
7.2 VIEW PARAMETERS .. 299
 7.2.1 Frequency Range (F) ... 299
 7.2.2 Channel A Display Range .. 300
 7.2.3 View Type .. 300
 7.2.4 Channel B Display Range .. 300
 7.2.5 Number of Spectral Profiles (T axis) .. 300
 7.2.6 Tilt Angle of T Axis ... 300
 7.2.7 Height Percentage of Y Axis ... 301
7.3 MENU ... 301
 7.3.1 File SubMenu ... 301
 7.3.2 Setting SubMenu .. 302
 7.3.2.1 Spectrum 3D Plot X Scale (Setting SubMenu) (ALT-S-X) ... 302
 7.3.2.2 Spectrum 3D Plot Y Scale (Setting SubMenu) (ALT-S-Y) ... 303
 7.3.2.3 Spectrum 3D Plot Chart Options (Setting SubMenu) (ALT-S-O) 303
 7.3.3 Instrument SubMenu .. 304
 7.3.4 Window SubMenu .. 304
 7.3.5 Help SubMenu .. 304
7.4 CONTEXT MENU ... 304
7.5 3D CURSOR READER .. 305
 7.5.1 3D Cursor Reader for Waterfall Plot .. 305
 7.5.2 3D Cursor Reader for Spectrogram ... 306
7.6 TIME STAMP .. 306

8 DEVICE TEST PLAN .. 307

8.1 OVERVIEW ... 307
8.2 STEP EDITOR ... 308
 8.2.1 Insert A Step ... 308
 8.2.2 Modify A Step ... 308
 8.2.3 Delete A Step .. 308
 8.2.4 Clear All .. 308
8.2.5 Instruction ... 309
 8.2.5.1 SIO ... 309
 8.2.5.2 OUT ... 312
 8.2.5.3 STI ... 314
 8.2.5.4 RPT ... 315
 8.2.5.5 LDP .. 316
 8.2.5.6 LDF .. 316
 8.2.5.7 SVF .. 317
 8.2.5.8 OET .. 318
 8.2.5.9 SET .. 318
 8.2.5.10 DCY ... 319
 8.2.5.11 JMP .. 319
 8.2.5.12 CHK .. 320
 8.2.5.13 LOG .. 321
 8.2.5.14 END .. 323
 8.2.5.15 IPT .. 324
 8.2.5.16 SEL .. 324
 8.2.5.17 OPT .. 325
 8.2.5.18 CLR .. 326
 8.2.5.19 OEB .. 327
 8.2.5.20 SEB .. 327
 8.2.5.21 RCM .. 328
 8.2.5.22 WCM .. 329
10.3 CONTEXT MENU .. 366
10.4 DDP ARRAY VIEWER .. 367
 10.4.1 Configuration ... 367
 10.4.2 Reports .. 367
 10.4.2.1 Reports for Harmonic Frequencies, RMS, Phases ... 367
 10.4.2.2 Report for RMS values in Octave Bands .. 368
 10.4.2.3 Report for Peak Frequencies, RMS, Phases ... 369
 10.4.2.4 Report for RMS values in User Defined Frequency Bands ... 369
 10.4.3 Context Menu ... 370

11 SAMPLES AND TEMPLATES ... 371

12 USER CUSTOMIZATION AND DEVELOPMENT ... 379

13 REFERENCES .. 381

14 FAQ .. 383
1 INTRODUCTION

1.1 Overview

VIRTINS® Multi-Instrument is a powerful multi-function virtual instrument software. It is a professional tool for time, frequency and time-frequency domain analyses. It supports a variety of hardware ranging from sound cards which are available in almost all computers to proprietary ADC and DAC hardware such as NI DAQmx cards, VT DSO, VT RTA, VT IEPE, VT CAMP and so on. It consists of the following instruments and functions.

(1) Dual-channel Oscilloscope

It provides five types of views:
- Real time waveform of Channel A and Channel B
- Real time waveform of Channel A + Channel B
- Real time waveform of Channel A - Channel B
- Real time waveform of Channel A × Channel B
- Real time Lissajous Pattern for Channel A and Channel B

Statistical data such as Maximum value, Minimum value, Mean value, Root Mean Square Value are also calculated and displayed. Each frame of data is time stamped with accuracy in millisecond and the time stamp is shown at the lower left corner of the Oscilloscope view.
The acquired signal can be averaged, time aligned, demodulated (AM, FM, PM), DC removed, half-wave or full-wave rectified, and digitally filtered before any other analyses. The types of digital filters supported are: Low Pass, High Pass, Band Pass, Band Stop and Arbitrary. The class of the filter can be FFT, FIR or IIR.

The displayed waveform can be played (output) or cyclically played (output) via the default computer sound card, if the sampling rate and bit resolution of the waveform is compatible with the sound card.

The Oscilloscope also provides a “Record” mode which can be used to record data to the hard disk continuously until the recording process is stopped manually or 2 gigabytes of data has been recorded, whichever is earlier. The display of the Oscilloscope can also work in “Roll” mode, with which the screen will be updated in real time even if the sweep time is long.

The Oscilloscope can perform waveform conversion among acceleration, velocity and displacement when acceleration, velocity or displacement sensors are used.

The Oscilloscope can display both analog and digital signals in one window and thus can be used as a MSO (Mixed Signal Oscilloscope) when used with a hardware MSO.

The Oscilloscope supports digital persistence display mode, Equivalent Time Sampling (ETS) mode, SINC interpolation between samples, and inter-frame average (synchronous average).

(2) Dual-channel Spectrum Analyzer

It provides seven types of views:
- Real time Amplitude Spectrum
- Real time Phase Spectrum
- Real time Auto Correlation Function
- Real time Cross Correlation Function
- Real time Coherence/Non-Coherence Function
- Real time Transfer Function (Bode Plot, Frequency Response, or Gain and Phase Plot) / Impedance Analyzer
- Real time Impulse Response

with adjustable FFT size ranging from 128 to 4194304, adjustable window overlap percentage (0%–99%), and 55 selectable window functions such as Rectangle, Triangle, Hanning, Hamming, Blackman, Kaiser and so on. It supports display in logarithmic scale for both X axis and Y axis (dBr, dBV, dBu, dBFS, dB), octave analysis (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96), frequency compensation, frequency weighting (flat, A weighting, B weighting, C weighting, ITU-R 468 weighting), moving average smoothing, DC removal, peak hold, linear average, exponential average, and parameter measurements (THD, THD+N, SINAD, SNR, Noise Level, IMD-SMPTE/DIN, IMD-CCIF1, IMD-CCIF2, Crosstalk, Bandwidth, Harmonics, Peaks, Energy in user defined frequency bands, Wow & Flutter, Sound Loudness & Sharpness, Total Non-Coherent Distortion+Noise, GedLee Metric), Power Spectral Density display, etc.
(3) Dual-channel Signal Generator (Sweep/Arbitrary/Function/Burst Generator)

It provides the following types of waveforms/tones:
- Sine
- Rectangle (with adjustable duty cycle)
- Triangle
- Saw Tooth
- White Noise
- Pink Noise
- Multi-Tones
- Arbitrary waveform via user-configurable waveform library (WFLibrary)
- Maximum Length Sequence (MLS), with adjustable length (127~16777215)
- Dual Tone Multi-Frequency (DTMF)
- Unit Impulse
- Unit Step
- Musical Scale
- Wave File (*.WAV)

at either a fixed frequency, or a frequency that sweeps linearly or logarithmically within a specified frequency range and time duration.

The output signal can be looped back partially (i.e. only one channel while the other channel can be used for field input) or fully (i.e. both channels), via the software itself, to the input of the Oscilloscope for display and analysis in real time. Synchronized operation between the Signal Generator and the Oscilloscope with timing accuracy in the same order of the sampling frequency is supported. Amplitude sweeping, burst signal generation, output signal fade in/out and modulation (AM, FM, PM) are also supported. In addition to the streaming mode, the software supports DDS (Direct Digital Synthesis) mode when the hardware used supports DDS.

(4) Dual-channel Multimeter

It provides the following types of digital displays:
- RMS
- dBV
- dBu
- dB
- dB(A)
- dB(B)
- dB(C)
- Frequency Counter
- RPM (Revolutions Per Minute)
- Counter
- Duty Cycle
- F/V (Frequency Voltage Conversion)
- Cycle RMS
• Cycle Mean
• Pulse Width
• Vibrometer (RMS, Peak/PP, Crest Factor values for acceleration, velocity and displacement)

The above items from Frequency Counter to Pulse Width involve a pulse counting process, and the software allows you to configure the counter trigger level and trigger hysteresis in order to shape the analog signal to rectangular pulses before counting. It also allows you to specify the frequency dividing ratio for the counter.

(5) Dual-channel Data Logger

It provides long time data logging function for 188 Derived Data Points (DDP) and 16 User Defined Data Points (UDDP), including RMS value, Peak Frequency, Sound Pressure Level, RPM, THD, etc. Up to eight data logger windows can be opened and each window can trace up to 8 variables. The logged data files can be reloaded into the data logger for review.

Three logging methods are supported: Fastest (i.e. take one record whenever new data are available), Time Interval (i.e. take one record whenever new data are available and the specified time duration has elapsed since the last update), Update Threshold (i.e. take one record whenever new data are available and the change compared with the last update exceeds the specified update threshold).

(6) Dual channel Spectrum 3D Plot

It is used to trace the spectrum variation with time. Two types of plots are provided:
• Waterfall, with adjustable tilt angle of T axis, adjustable height of Y axis, and selectable color palettes.
• Spectrogram, with selectable color palettes

(7) Device Test Plan

Device Test Plan provides a mechanism for you to configure and conduct your own device test steps. It takes the advantage of the sound card’s (or other ADC/DAC hardware’s) capability of simultaneous input & output, to generate a stimulus to the Device Under Test (DUT) and acquire the response from that device at the same time. Different stimuli can be generated and the response can be analyzed in different ways. The DUT can be marked as Pass or Fail after a sequence of test steps and a test report can be generated. Device Test Plan supports 23 instructions with corresponding parameters. Test results (e.g. Gain vs Frequency, Phase vs Frequency, etc.) can be plotted in up to 8 X-Y plots and reported in one textual log window in real time. Device Test Plan supports connection with external systems through serial communication.

Device Test Plan can also be used to perform other functions such as data file batch processing, batch signal event capturing and storing, etc.

(8) LCR Meter
It is used to measure the value of an inductor, a capacitor or a resistor, or the impedance of a network of them. Two types of external connections are supported:

- Serial connection for high impedance measurement
- Parallel connection for low impedance measurement

(9) DDP Viewer

It is used to display the value of a DDP (Derived Data Point) in a dedicated window with bigger font size. It is also possible to specify the DDP’s high-high, high, low, low-low limits for alarming. Different alarm sounds can be configured for different types of alarms. Alarm acknowledgement is supported. Up to 16 DDP viewers can be opened. These DDP viewers can also be used to define and display UDDPs (User Defined Data Points). A DDP array viewer is also provided which can be used to create reports for harmonic analysis, peak analysis, etc.

The above instruments (1)~(6) are basic instruments and can run simultaneously, while (7) and (8) ride on the top of the basic instruments and require the cooperation of some or all the basic instruments to achieve the specified functions.

A/D and D/A

For a basic configuration, the sound card is used as the signal input and output device and no additional A/D and D/A hardware is required. The sampling frequency depends on the capability of the sound card. The software allows you to select a sampling frequency of up to 768,000 Hz and a sampling bit resolution of 8 bits, 16 bits or 24 bits, as long as they are supported by the sound card used. Both the sound card MME driver (Windows default) and the sound card ASIO driver (often used in Pro Audio, ASIO is a trademark and software of Steinberg Media Technologies GmbH) are supported by the software.

The software is able to interface to other ADC and DAC hardware based on the standard data acquisition software interface specification (vtDAQ® and vtDAO®) developed by Virtins Technology. In this case, the sampling capability is determined by the respective hardware. The ADC and DAC hardware can be selected independently in the software. For example, you can run a DSO (Digital Storage Oscilloscope) hardware for ADC and the sound card for DAC simultaneously.

Triggering

The software supports both software trigger and hardware trigger.

For sound card based data acquisition, it is possible to specify a software trigger condition for collecting a frame of data. A negative or positive trigger delay can be specified so that collecting data can be started before or after the trigger event. The software features a specially designed data acquisition approach which is able to monitor the input signal continuously without missing any trigger event, before a frame of data is collected into the PC memory after the trigger event is found. This makes the software suitable for transient signal recording. Both level triggering and differential triggering are supported.
Calibration

For sound card based data acquisition, the software supports the calibration of input and output channels so that absolute values in engineering units can be used for display, analysis or export. It is able to take into account the change of the sound card internal gain setting (e.g. Mic gain, Mic Boost, Line In gain) automatically so that the calibration will not change with the gain settings. It also allows accounting for the external attenuation ratio if an external attenuation circuit is used.

Graph Operation

Zooming and Scrolling is supported in all graphs, enabling you to investigate the fine details of the data. This is very important when a large amount of data are displayed on one screen.

A cursor reader is provided in each graph to show the x and y readings of the actual measurement point. For Spectrum 3D Plot, the cursor reader supports the readout of x, y, t values of the actual measurement point.

Two markers are provided in each graph to get the x and y readings of the actual measurement points nearest (in horizontal direction) to the points of the mouse clicks. The differences in the readings of the two markers are also displayed.

Five chart types are supported: Line, Scatter, Column, Bar, and Step. Line width and colors of the graph are configurable. Options are provided to either display all data points (slow) or only display one data points per vertical raster line (fast).

The data in any graph can be copied into the clipboard as text and later paste into other software such as Microsoft Excel for further analysis. The image of the graph can be copied into the clipboard as Bitmap image and later paste into other software such as Microsoft Word.

Reference Curves

Up to five reference curves can be set for each channel in each graph. The reference curve can be configured by either copying the current curve, or loading a properly formatted text file or a previously saved reference file from the hard disk. The reference curves can be defined as high-high, high, low, low-low limits for the real-time curves, and the alarm statuses can be obtained through the respective DDPs.

File Import and Export

The collected frame of data can be saved as a wave file (*.wav) or exported as a text file (*.txt). All analysis results can be exported as text files (*.txt). All graphs can be exported as bitmap files (*.bmp) or printed out directly. A long wave file can be imported frame by frame either manually or automatically.

Wave files with PCM format or properly formatted text file can be imported for analysis. The signal generated by the Signal Generator can be saved as a wave file
(*.wav) or a text file (*.txt) for a given duration of up to 1000 seconds as long as the spare space on the hard disk is sufficient. The saved files can be in turn imported for display and analysis or used by other software.

Data Merging and Extraction
Combining data from individual channels of different wave files and extracting part of data from a wave file are supported.

Save/Load, Lock/Unlock Panel Setting
You can save your preferred instrument panel setting either as default or as a customized panel setting for later use. You can configure up to 20 most frequently used panel settings in the Hot Panel Setting Toolbar so that these settings can be loaded by just a single mouse click. You can also lock the panel setting so that only authorized users can unlock it and then modify the setting.

Controls/Options Enabling and Disabling
Graphical User Interface items such as menu items, buttons, combo boxes, edit boxes, radio boxes, checkboxes are enabled/disabled based on context, so as to void any misunderstanding and mis-operation.

Displayed Precision for Numerical Values
The precision (decimal places) of the numerical values displayed on the screen are automatically adjusted based on the precision of their sources.

Multilingual User Interface
The software supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

Function Allocation in Multi-Instrument Series
The following table shows the function allocation matrix for Multi-Instrument series. The Spectrum 3D Plot, Data Logger, LCR Meter, Device Test Plan, Vibrometer are add-on modules/functions and should be purchased separately, and they are only available for Multi-Instrument Lite, Standard, and Pro versions, except that the Vibrometer is only available for Multi-Instrument Standard and Pro versions.
Legend:

- Function available
- Function available in Full version only

General Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Card MME</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sound Card ASIO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other Hardware</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

File Operation

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load WAV File</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Load TXT File</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Load WAV File by Frame (fore Long WAV File)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Combine WAV Files</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Extract Data and save them into a new WAV File</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Save/Load Panel Setting</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Data Export

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Text to Clipboard</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Copy BMP to Clipboard</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Print Preview</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Print</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Export as TXT File</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Export as BMP File</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Trigger Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Mode</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigger Source</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigger Edge</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigger Level</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigger Delay</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High Frequency Rejection</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Noise Rejection</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Sampling Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling Rate</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sampling Channels</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sampling Bit Resolution</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Record Length</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Calibration

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/V Conversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latency for Sync. Output/Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Factor for Power Calculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph Operation

<table>
<thead>
<tr>
<th>Function</th>
<th>Sound Card MME</th>
<th>Sound Card ASIO</th>
<th>Other Hardware</th>
<th>vtdAQ, vtdAO software development kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scroll</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cursor Reader</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marker</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chart Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Line Width</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Color</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fast/Slow Display Mode</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Refresh Delay</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Font Size</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Roll Mode</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Reference Curves & Limits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain Adjustment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Input Peak Indicator</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sound Card Selection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sampling Parameter Auto Setting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multilingual GUIs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Show/Hide Toolbar</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lock/Unlock Panel Setting</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hot Panel Setting Toolbar</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ActiveX Automation Server</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oscilloscope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Waveform</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Waveform Addition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Waveform Subtraction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Waveform Multiplication</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lissajous Pattern</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inter-Frame Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exponential Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intra-Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Delay Removal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Demodulation (Intra-Frame)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Digital Filtering (Intra-Frame)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove DC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rectification</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT Low Pass</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT High Pass</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT Band Pass</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT Band Stop</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT Frequency Response</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FIR Low Pass</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>FIR High Pass</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIR Band Pass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIR Band Stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIR Frequency Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIR Coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max, Min, Mean, RMS</td>
<td>√</td>
<td>√</td>
<td>√ (offline)</td>
<td>√</td>
</tr>
<tr>
<td>Record Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence Display Mode</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Equivalent Time Sampling Mode</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Analog & Digital Signal Display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINC Interpolation</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Spectrum Analyzer

<table>
<thead>
<tr>
<th>Type</th>
<th>Sound Card Oscilloscope</th>
<th>Sound Card Spectrum Analyzer</th>
<th>Sound Card Signal Generator</th>
<th>Multi-Instrument Lite</th>
<th>Multi-Instrument Standard</th>
<th>Multi-Instrument Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude Spectrum</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Spectrum</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-correlation</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Cross-correlation</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Coherence/Non-Coherence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer Function / Impedance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulse Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Compensation</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Frequency Weighting</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Remove DC</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Smoothing via Moving Average</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Peak Hold</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Linear Average</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Exponential Average</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>THD,THD+N,SNR, SINAD,Noise Level, ENOB</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>IMD</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Crosstalk</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Harmonics & Phase</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Energy in User Defined Frequency Band</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Peaks, SFDR</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Wow & Flutter</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Sound Loudness</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Sound Loudness Level</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Sound Sharpness</td>
<td>√</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Total Non-Coherent Distortion + Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>GedLee Metric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>FFT Size 128~32768</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FFT Size 65536~4194304</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Intra-Frame Average</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Window function</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Window Overlap</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Peak Frequency detection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cross Correlation Peak detection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Octave Analysis (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Linear/Log/Power Spectral Density Scale for X and Y</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Signal Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Rectangle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Triangle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Saw Tooth</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>White Noise</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pink Noise</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MultiTones</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Arbitrary Waveform</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MLS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DTMF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Musical Scale</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wave File</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Play Waveform in Oscilloscope</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cyclic Play Waveform in Oscilloscope</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sweep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Sweep (Linear/Log)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Amplitude Sweep (Linear/Log)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Burst (Mask)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Normal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phase Locked</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fade In</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fade Out</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Loopback (all channels)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Software Loopback (1 channel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync. with Oscilloscope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save as WAV file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save as TXT file</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multimeter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dBu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dB(C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency/Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter Trigger Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counter Trigger Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Divider</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDP Viewer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDP & UDDP display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH, H, L, LL Alarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display Precision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define UDDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Acknowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear / Exponential Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDP Array Viewer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Blank - Function available if purchased
Shaded Blank - Function NOT available for that version

<table>
<thead>
<tr>
<th>Type</th>
<th>Sound Card Oscilloscope</th>
<th>Sound Card Spectrum Analyzer</th>
<th>Sound Card Signal Generator</th>
<th>Multi-Instrument Lite</th>
<th>Multi-Instrument Standard</th>
<th>Multi-Instrument Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterfall Plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrogram</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrogram Color Palette</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virtins Technology
1.2 System Requirement

Microsoft Windows 95 or greater, Microsoft NT or greater. Both 32-bit and 64-bit Windows are supported. Screen resolution is recommended to be greater than 1024 × 600 pixels.

For a sound card based data acquisition system, 8, 16 or 24 bit Windows compatible sound card is required.
1.3 Quick Start Guide

1.3.1 Start Multi-Instrument

To start the Multi-Instrument software, on the Windows desktop, select [Start]>[All Programs]>[Multi-Instrument]>[VIRTINS Multi-Instrument].

If the software license has not been activated and the trial period has not expired, the software will work in trial mode. Under this mode, the software will have the full functionality of the full package of the software except that a text “trial” will be shown in the center of every graph window.

If the software license has not been activated and the trial period has expired, the software will refuse to run.

If the software license has been activated, by a softkey (activation code), a USB hardkey, or a VT device, the software will work in licensed mode. Under this mode, the software will have the functionality corresponding to the license level activated.

1.3.1.1 Default Device Selection

If the software is started for the very first time after installation, it will prompt the user to select a default device. The default device can also be changed later via [Setting]>[ADC Device], [Setting]>[DAC Device], and [Setting]>[Configure Hot Panel Setting Toolbar], or simply [Setting]>[Restore to Factory Default].
1.3.1.2 Default Skin Selection

If the software is started for the very first time after installation, it will prompt the user to select a default color scheme (Skin). The default skin can also be changed later via [Setting] > [Display].

![Default Skin Selection Dialog](image1)

1.3.1.3 Run Multiple Instances

It is possible to launch multiple instances of the software on the same computer. Each instance has its own default configuration. It is possible to use different ADC/DAC devices or different channels in different instances. This effectively increases the total number of channels supported. The location of each instance on the screen is remembered by the software. Each instance except the first one has a unique number in the title bar of the main window to differentiate itself from others.

![Multiple Instances](image2)

1.3.2 Screen Layout and Components

The main window of the software is divided into the following eight areas: (1)–(8).
(1) Title bar

It is located at the top of the screen. It contains software title, software version number, add-on modules activated, file name opened (if any), ADC device being used, Panel Setting File Name loaded (if any, when the Panel Setting is locked), and instance no.

Depending on the license level activated, the software title can be:

- Sound Card Oscilloscope
- Sound Card Spectrum Analyzer
- Sound Card Signal Generator
- Multi-Instrument Lite
- Multi-Instrument (i.e. Standard)
- Multi-Instrument Pro

Depending on the license level activated, the add-on modules activated can be:

- 3DP (i.e. Spectrum 3D Plot)
- DLG (i.e. Data Logger)
- LCR (i.e. LCR Meter)
- UDP (i.e. Device Test Plan)
- VBM (i.e. Vibrometer)

(2) Menu bar
It is located at just below the title bar. Different instruments may have different menu items in each submenu.

(3) Sampling Parameter Toolbar

It is located just below the menu bar. It contains three parts:

- **File Input & Output**

- **Trigger Parameters**
 It contains (from left to right):

 - Trigger Mode
 - Trigger Source
 - Trigger Edge
 - Trigger Level
 - Trigger Delay
 - Trigger Frequency Rejection

- **Sampling Parameters (for ADC)**
 It contains (from left to right):

 - Sampling Frequency
 - Sampling Channels
 - Sampling Bit Resolution
 - Record Length per sweep
 - Roll Mode Checkbox
 - Record Button
 - Sampling Parameter Auto Setting Button.

This toolbar is common for all instruments. Note that the sampling parameters for DAC are located in the Signal Generator panel.

(4) Instrument & Miscellaneous Toolbar

It is located just below the Sampling Parameter Toolbar, consisting of the following two parts:

- **Instrument Toolbar (left hand side)**
 It contains buttons for (from left to right):

 - Oscilloscope Run/Stop
 - Oscilloscope
 - Spectrum Analyzer
 - Multimeter
 - Spectrum 3D Plot
 - Signal Generator
 - Device Test Plan
 - Data Logger
 - DDP viewer.

- **Miscellaneous Toolbar (right hand side)**
 It contains (from left to right):

 - Invert Input Signal button
 - Channel A Zeroing button
 - Channel B Zeroing button
 - Windows Recording Control
 - Windows Volume Control
 - Waveform Play button
 - Waveform Cyclic Play Button
 - ADC Channel A Coupling Type
 - ADC Channel B Coupling Type
 - ADC Channel A Range
 - ADC Channel B Range
 - Probe A Current Switch Position
 - Probe B Current Switch Position
 - and Input Peak Level Indicators for Channel A and Channel B.

This toolbar is common for all instruments.
(5) Long Wave File Navigation Toolbar (Hidden by default)

It is located just below the Instrument and Miscellaneous Toolbar, and is visible only when a WAV file is opened with “Open Frame by Frame” command. It contains the following controls (from left to right):

Frame Up button, Frame Down button, Frame Auto Scroll button, Current Frame Position Slider, Current Frame Position/Length of the File, Frame Overlap Percentage.

(6) Hot Panel Setting Toolbar

It is a toolbar containing 20 configurable buttons. You can assign each button with a frequently used panel setting file via [Setting]>[Configure Hot Panel Setting Toolbar], so that that panel setting file can be loaded when the button is pressed. You can show or hide this toolbar via [Setting]>[Show Hot Panel Setting Toolbar].

By default, when “Sound Card” is selected as the default device, the 20 buttons are pre-configured as follows:

1. Home: Default setting.
2. OCT3: 1/3 Octave Analysis (Avg. 10)
 Pink noise will be generated by pressing the start button of the Signal Generator. The pink noise will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. A flat curve in the Spectrum Analyzer would indicate a flat magnitude frequency response of the DUT.
3. OCT6: 1/6 Octave Analysis (Avg. 10)
 Same as OCT3, but with finer frequency resolution.
4. OCT12: 1/12 Octave Analysis (Avg. 10)
 Same as OCT6, but with finer frequency resolution.
5. Polarity: Polarity Test with Crest Factor Check
 0.5 ms half-inverted sawtooth pulse will be generated every 100 ms by pressing the start button of the Signal Generator. The signal will be injected into the DUT (Device Under Test) such as a speaker, and the response of the DUT will be captured and analyzed by the Oscilloscope. The polarity of the DUT can be seen from the direction of the pulse displayed in the oscilloscope. In addition, a DDP viewer is configured to display the measured polarity using its background color.
6. NoiseL: Noise Level when there is no input signal (Avg. 10)
 The noise level of the output of the DUT (Device Under Test), when there is no input signal, will be measured directly by the Oscilloscope and Spectrum Analyzer. The spectral curve in the Spectrum Analyzer will show the “apparent”
noise level, which will vary with the FFT size used. The actual noise level (i.e. total noise power) will be represented by a horizontal dotted line in the Spectrum Analyzer. It will not vary with the FFT size used. The horizontal coverage of the dotted line represents the noise level calculation bandwidth, which can be adjusted via [Setting]>[Spectrum Analyzer Processing]> "Parameter Measurement">"Range".

7. NoiseLa: Noise Level (A-Weighted) when there is no input signal (Avg. 10) Same as NoiseL, but with A-weighting profile applied to the spectra.

8. THD: THD,THD+N,SNR,SINAD,Noise Level, ENOB (Avg. 10) A 1 kHz (to be precise, a frequency very close to 1 kHz in order to avoid spectral leakage) sine wave will be generated by pressing the start button of the Signal Generator. The sine wave will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. All the above parameters of the DUT will be measured and displayed. This panel setting should be used only if the same sound card is used for signal input and output. In case different sound cards are used for signal input and output, you should change the Window Function in the Spectrum Analyzer from Rectangle to Kaiser 6.

9. THDa: THD,THD+N,SNR,SINAD,Noise Level, ENOB (A-Weighted) (Avg. 10) Same as THD, but with A-weighting profile applied to the spectra.

10. IMDsmp: IMD SMPTE (60 Hz + 7 kHz, 4:1) (Avg. 10) A 60 Hz and a 7 kHz sine waves mixed at an amplitude ratio of 4:1 will be generated by pressing the start button of the Signal Generator. The mixed signals will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. The SMPTE IMD value of the DUT will be measured and displayed.

11. IMDdin: IMD DIN (250 Hz + 8 kHz, 4:1) (Avg. 10) A 250 Hz and a 8 kHz sine waves mixed at an amplitude ratio of 4:1 will be generated by pressing the start button of the Signal Generator. The mixed signal will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. The DIN IMD value of the DUT will be measured and displayed.

12. IMDccif: IMD CCIF2 (19 kHz + 20 kHz, 1:1) (Avg. 10) A 19 kHz and a 20 kHz sine waves mixed at an amplitude ratio of 1:1 will be generated by pressing the start button of the Signal Generator. The mixed signal will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. The CCIF2 IMD value of the DUT will be measured and displayed.

13. CrossTlk: Crosstalk A->B, THD, THD+N, SNR, SINAD, ENOB (Avg. 10) A 1 kHz (to be precise, a frequency very close to 1 kHz to avoid spectral leakage) sine wave will be generated by pressing the start button of the Signal Generator. The generated signal will be injected into Channel A of the DUT (Device Under Test) and the input of Channel B of the DUT will be grounded. The response of
the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. All the above parameters of the DUT will be measured and displayed.

14. FRwhite: Magnitude Frequency Response (White Noise, Avg. 30)
 White noise will be generated by pressing the start button of the Signal Generator. The white noise will be injected into the DUT (Device Under Test), and the response of the DUT will be captured and analyzed by the Oscilloscope and Spectrum Analyzer. The curve in the Spectrum Analyzer indicates the magnitude frequency response of the DUT.

15. FRswp: Magnitude Frequency Response (Frequency Sweep, Peak Hold forever)
 A frequency swept sine wave (chirp) will be generated by pressing the start button of the Signal Generator. The chirp signal will be injected into the DUT (Device Under Test), and the response of the DUT will be captured by the Oscilloscope and Spectrum Analyzer. The curve in the Spectrum Analyzer indicates the magnitude frequency response of the DUT.

16. BodePlot: Bode Plot (Transfer Function, Frequency Response) (White Noise, Avg. 30)
 White noise will be generated by pressing the start button of the Signal Generator. The generated white noise will be split into two: one injected into the DUT (Device Under Test), and the other injected into Channel B of the Oscilloscope. The response of the DUT will be injected into Channel A of the Oscilloscope. The curve in Channel A of the Spectrum Analyzer will show the gain vs frequency plot of the DUT, and the curve in Channel B of the Spectrum Analyzer will show the phase shift vs frequency plot of the DUT.

17. THD~f: THD, THD+N, SNR, Magnitude Response vs Frequency Plot
 Please refer to Section 8.8.3.

18. THD~P: THD, THD+N vs Magnitude, Power Plot
 Please refer to Section 8.8.4.

19. IMD~P: SMPTE IMD vs Magnitude, Power Plot
 Please refer to Section 8.8.5.

20. AudioTst: Automated Audio Parameter Test
 Please refer to Section 8.8.7.

Note: In the above tests, it is assumed that the performance of the test set-up itself (e.g. the sound card that is used as the measurement instrument) is better than that of the DUT (preferably one order better), so that the measurement errors introduced by the test set-up itself can be ignored. The test set-up’s specifications can be obtained from the hardware manufacturers. A test set-up with a low noise level, high bit resolution, wide bandwidth, flat frequency response, and low distortion should be used. The parameters of the test set-up can also be obtained by directly looping back its output to its input, and then performing the above tests. Some of the imperfection of the test set-up can be compensated by software, such as the non-flat magnitude frequency response. But some cannot, such as distortion and noises.
Please refer to the following documents for the some sound card loop back test examples:

- **EMU Tracker Pre Test Report using Multi-Instrument**

- **M-Audio Mobile Tracker Pre Test Report using Multi-Instrument**

- **VT XLR-to-USB Pre Test Report using Multi-Instrument**

- **EMU 0204 Test Report using Multi-Instrument**

(7) **Display area**

It is positioned in the middle of the screen. It is used to display various instrument views or panels. Multiple views and panels can be displayed in this area simultaneously. This area is intentionally designed as big as possible in order to accommodate multiple views/panels and display the fine details of the data. Compared with conventional instrument, one distinct advantage of virtual instrument is that it utilizes the computer screen for display, which is much bigger than the screen of a conventional oscilloscope. However, this advantage has not yet been fully taken in many other virtual instrument softwares in the market, as they simply mimic the conventional instrument panel on the computer screen and thus only a small portion of the computer screen is used for the display of the measurement data. In contrast, Multi-Instrument gives priority to the display of the measurement data on the screen and at the same time maintains a user friendly human machine interface (HMI) by using common Windows gadgets.

(8) **View Parameter Toolbar**

It is located at the bottom of the screen. Each view (e.g. Oscilloscope view, Spectrum Analyzer view, Multimeter view, Spectrum 3D Plot view) has its own View Parameter Toolbar and only the one for the foremost view will be shown, in order to save screen space. Clicking anywhere within an instrument view will bring forward its respective View Parameter Toolbar and make it visible.

- **View Parameter Toolbar for Oscilloscope**

| T 10ms | x1 | A Auto | Off | M A&B | B Auto | Off |

It contains (from left to right):

- **T Range**, **T Multiplier**, **A Range**, **A Multiplier**, **Oscilloscope Type**, **B Range**, **B Multiplier**.
• View Parameter Toolbar for Spectrum Analyzer

It contains (from left to right): *Horizontal Axis Range, Horizontal Axis Multiplier, A Range, A Multiplier, Spectrum Analyzer Type, B Range, B Multiplier, FFT Size, Window Function, Window Overlap Percentage.*

• View Parameter Toolbar for Multimeter

It contains (from left to right): *Display/Hide A, Counter A Trigger Level, Counter A Trigger Hysteresis, A Divider, Multimeter Type, Display/Hide B, Counter B Trigger Level, Counter B Trigger Hysteresis, B Divider.*

• View Parameter Toolbar for Spectrum 3D Plot

It contains (from left to right): *F Range, A Range, Spectrum 3D Plot Type, B Range, T Range, Tilt Angle of T, Height Percentage of Y.*

(a) **Cursor Reader** (left mouse click)

Please refer to the section “Cursor Reader and Markers” in the next chapter for details.

(b) **Marker** (double left mouse click, with or without CTRL or SHIFT)

Please refer to the section “Cursor Reader and Markers” in the next chapter for details.

(c) **Context Menu** (right mouse click)

Please refer to the section “Context Menu” in the following chapters for details.

(d) **Horizontal Scrollbar** (put the mouse cursor just below the horizontal axis till it becomes a magnifying glass, then left click to zoom in, right click to zoom out, and move the scroll box to scroll horizontally. Zoom in/out can also performed using the mouse wheel.)

Please refer to the sections about the multiplier for horizontal axis in the following chapters for details.

(e) **Channel A Scrollbar** (put the mouse cursor on the left side of A axis till it becomes a magnifying glass, then left click to zoom in, right click to zoom out, and move the scroll box to scroll vertically for Channel A. Zoom in/out can also performed using SHIFT + mouse wheel.)
Please refer to the section “Channel A Multiplier” in the following chapters for details.

(f) **Channel B Scrollbar** (put the mouse cursor on the right side of A axis till it becomes a magnifying glass, then left click to zoom in, right click to zoom out, and move the scroll box to scroll vertically for Channel B. Zoom in/out can also performed using CTRL + mouse wheel.)

Please refer to the section “Channel B Multiplier” in the following chapters for details.

(g) **Text display Area of a graph window**

It displays the DDP (Derived Data Point) values of that graph window. When the cursor reader / marker is shown, it will also display the cursor / marker readings.

1.3.3 Change ADC/DAC device

You can change the ADC device being used via [Setting]>[ADC Device]>[Device Model].

You can change the DAC device being used via [Setting]>[DAC Device]>[Device Model].

1.3.4 Basic operations

To get familiar with the basic operation of the software quickly, it is recommended to use your computer’s sound card with a built-in or external microphone. You can go to [Setting]>[ADC Device], and choose “Sound Card MME” as the Device Model, and choose a sound card (for Windows before Vista) or an input source of a sound card (for Windows after Vista) in the Device No. field. You can adjust the microphone gain of your sound card via the Recording Control under Windows Control Panel. You can also access the Recording Control via the Recording Control button in the Instrument & Miscellaneous Toolbar.

Now, if you start the oscilloscope and speak before the microphone, you should see the waveform and spectra of your voice. To get real time display of your voice, it is recommended to set the sweep time of the oscilloscope to be 5 ms ~100 ms. To change the sweep time, click anywhere within the oscilloscope window and change the sweep time at the bottom left corner. You can change the trigger parameters and sampling parameters in the sampling parameter toolbar and observe their effects. The trigger level and trigger delay can also be changed by dragging the respective markers along A axis and the horizontal axis at the top in the Oscilloscope window.

If the oscilloscope sweep time is too long (e.g. greater than 1s), the screen update will become slow, then you can tick the “Roll” checkbox at the upper right corner of the screen to get real time but partial update of the screen.
You can record your voice continuously by stopping the oscilloscope, uncheck the “Roll” checkbox if necessary, and then press the “Record” button at the upper right corner of the screen.

To get familiar with the operation of the Signal Generator, it is recommended to use your computer’s sound card with a speaker. You can go to [Setting] > [DAC Device], and choose “Sound Card MME” as the Device Model, and choose a sound card (for Windows before Vista) or an output destination of a sound card (for Windows after Vista) in the Device No. field. You can adjust the volume of the sound card via the Volume Control under Windows Control Panel. You can also access the Volume Control via the Volume Control button in the Instrument & Miscellaneous Toolbar.

Click the Signal Generator button in the Instrument and Miscellaneous Toolbar will open the Signal Generator panel. The basic operation of the Signal Generator is straightforward. Please refer to Chapter Signal Generator for details.

Whenever you want to revert back to the default panel setting, stop the oscilloscope and go to [File] > [New], or simply press “Home” in the Hot Panel Setting Toolbar.

If you want to see some more basic tests with the software, please refer to: Basic Oscilloscope, Spectrum Analyzer, Multimeter and Signal Generator Functional Tests using Multi-Instrument and Pocket Multi-Instrument with Sound Cards

1.4 Input & Output Connection for Sound Card Based Systems

For sound card based systems, signals to be tested should be connected to either the "MIC" jack or the "Line in" jack, and the generated signals will be output via the "Speaker" jack or the "Line out" jack.

Typically, the "MIC" jack of a sound card has an input impedance in the range of 600 Ω ~ 50 kΩ (card dependent). Its ADC full-scale input voltage (1/2 Vpp) is in the range of 1 mV ~ 500 mV (card dependent), and is adjustable through the software volume control under Windows Control Panel or the hardware volume control (if any) provided by the sound card. Normally it only allows a single channel input.

The "Line In" jack of a sound card has an input impedance typically around 1 kΩ ~ 50 kΩ (card dependent), and the ADC full-scale input voltage (1/2 Vpp) of this connection is in the range of 500 mV ~ 2 V (card dependent), and is adjustable through the software volume control under Windows Control Panel or the hardware volume control (if any) provided by the sound card. Generally, the "Line In" should be used as the primary input connection as it offers better Signal-to-Noise Ratio (SNR) and bandwidth.
The "Line Out" connection of a sound card has an output impedance typically in the range of $20 \Omega \sim 500 \Omega$ (card dependent) and can output signal up to 2 V typically (card dependent). It has better SNR than the "Speaker" connection.

The "Speaker" connection of a sound card has a typical output impedance of $4\Omega \sim 8\Omega$ (card dependent) and output power of 2 W (card dependent). The headphone connection of a sound card has a typical output impedance of $4\Omega \sim 100\Omega$ and output power of 100 mW.

For input connection, the simplest way is to directly connect the signal under test to the sound card "Line In" or "MIC" jack (see the figure below). However, this kind of connection requires the tester to be extremely careful to ensure the input signal is within the allowable range before connecting. Otherwise the sound card or even the PC may be damaged. The maximum allowable input voltage is about 3V (card dependent).

In order to prevent the sound card from excessive input voltage, the following limiter circuit can be added. The two Silicon diodes will clamp the input voltage at about $2 \times 0.65 = 1.3$ (V). If the sound card ADC full scale is affected, one more Silicon diode can be added in series to clamp the input voltage at about $3 \times 0.65 = 1.95$ (V) instead. The protection is limited to ± 50 V maximum (also depending on the resister's value and maximum allowable current, and the diode's maximum allowable current). If the amplitude of the signal to be measured exceeds the allowable range of the sound card, it must be attenuated before connecting. The simplest way to attenuate the input signal is to add a resistor in series to the sound card’s input. This resistor and the sound card’s input impedance form a voltage divider, the higher the resistor’s value, the higher the attenuation ratio, and the higher the input impedance of this measurement circuit.

In order to get good measurement result, the output impedance of the circuit under test must be lower than the input impedance of the sound card’s measurement circuit. Otherwise the signal cannot be properly transferred from the circuit to the sound card. If necessary, you can add a pre-amplifier before the sound card’s input. The pre-
amplifier is responsible for impedance conversion, signal amplification or attenuation, and input protection.

The following figure shows the output connection for the Signal Generator. The resistor is used to prevent accidental short circuit of the output. It can be omitted if you are careful enough. As the output impedance of a sound card is very low, there should not be any impedance matching problem when connected to external circuits.

![Output connection with short circuit protection](image)

It should be noted that for many sound cards (typically the internal sound card of a desktop PC or a laptop PC with built-in AC power supply adapter), the ground line of input and output is connected to the mains earth. This is not a problem if the circuit under test is floating (i.e. isolated from the mains earth). Otherwise, you must make sure that the ground line is connected to a point on the circuit that is also at earth potential.

The above mentioned connection circuits and pre-amplifiers are NOT supplied with the software unless otherwise stated explicitly during purchasing.

For non-sound-card based systems, please refer to the respective hardware manual for the input & output connection.

1.5 Specifications

1.5.1 VIRTINS Oscilloscope

1. **ADC Hardware Related Specifications**

 Sound Card based systems:

 1. **Sweep Time:** 100 µs–500 s (computer memory dependent).
 2. **Bandwidth:** 10 Hz - 200 kHz (sound card dependent).
 3. **Maximum Allowable Input Voltage (if connected directly):** about 3 V (sound card dependent).
 4. **Selectable sampling frequency (up to 768kHz), sampling bit resolution (8, 16 or 24 bits) and sampling channels (one or two) (sound card dependent)**
5) Four trigger modes: Auto, Normal, Single and Slow.

6) Support triggering by rising edge, falling edge, or both at a specified trigger level or for a specified amount of change, in the selected input channel. Support trigger frequency rejection.

7) Support pre-triggering and post triggering from 0 to 100% of the specified record length.

8) Continuously monitor the input signal such that no trigger event is missed before data collection.

9) Support calibration of the input channels with the input gain setting automatically being taken into account. Re-calibration is not necessary even if the gain setting changes.

Non Sound Card based systems:

Please refer to the respective hardware manual.

2 Can be used as a transient signal recorder to capture and store data continuously into the hard disk for up to 2 gigabytes.

3 Five view types: Real time waveform of Channel A and Channel B, Real time waveform of Channel A + Channel B, Real time waveform of Channel A - Channel B, Real time waveform of Channel A × Channel B, Real time Lissajous Pattern for Channel A and Channel B.

4 Independent X axis and Y axis zooming and scrolling.

5 WAV files and properly formatted TXT files can be imported for display and analysis.

6 Collected measurement data can be saved as WAV files or exported as TXT files.

7 Data curve can be printed out directly or saved as BMP files.

8 Support adding notes to the measurement data.

9 Fast display refresh rate: about 50 frames per second (tested with a sound card under Windows XP SP2 on IBM ThinkPad R51 Laptop PC with Intel Pentium M processor 1.60 GHz, with sweep time=10 ms and FFT size=1024 and both the Oscilloscope and the Spectrum Analyzer running under "Auto" trigger mode). Thus data are displayed and analyzed in "true" real time.

10 The colors of display, font size, screen refresh rate are configurable.

11 Number of points to be collected per sweep can be fine tuned at one point's resolution.
12 Display the Maximum, Minimum, Mean, RMS values of the data per sweep. Therefore it can be used as a voltmeter.

13 Support one cursor reader and two markers which stick to the measurement data.

14 Five chart types: Line, Scatter, Column, Bar, and Step. Line width is adjustable. Support SINC interpolation between samples.

15 Support combining data from individual channels of different wave files and extracting part of data from a wave file.

16 Support normal and inverted display of a waveform.

17 Up to five reference curves can be set for each channel. The reference curve can be configured by either copying the current curve, or loading a properly formatted text file or a previously saved reference file from the hard disk. Reference curves can be assigned as High-High, High, Low, Low-Low limits.

18 Support digital filtering (intra-frame processing) such as low pass, high pass, band pass, band stop and arbitrary. The filter class can be FFT, FIR or IIR. Support inter-frame processing including linear and exponential average. Support demodulation (AM, FM, PM), DC removal and rectification. Support removal of time delay between two channels.

19 Support loading long WAV file frame by frame, either manually or automatically.

20 Each frame of data is time stamped with accuracy in millisecond.

21 The data in the graph can be copied into the clipboard as text and later paste into other software such as Microsoft Excel for further analysis. The image of the graph can be copied into the clipboard as Bitmap image and later paste into other software such as Microsoft Word.

22 The waveform displayed in the Oscilloscope can be played or cyclically played via the default computer sound card, if the sampling rate and bit resolution of the waveform is compatible with the sound card.

23 The screen display can also work in “Roll” mode.

24 Support waveform conversion among acceleration, velocity and displacement. Support both SI and English unit systems.

25 Support engineering unit conversion.

26 Support auto setting of sampling parameters such as sampling frequency, sweep time and full-scale ADC range.

27 Support digital persistence (phosphorescent, rainbow) mode and equivalent time sampling mode.
28 Support mixed signal (analog and digital) display.

29 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.2 VIRTINS Spectrum Analyzer

1 Seven view types: Real time Amplitude Spectrum, Real time Phase Spectrum, Real time Auto Correlation Function, Real time Cross Correlation Function, Real time Coherence/Non-Coherence Function, Real time Transfer Function / Impedance Analyzer, Real time Impulse Response.

2 Independent X axis and Y axis zooming and scrolling.

3 In Amplitude Spectrum, Y axis supports relative modes in linear and dBr scale, and absolute mode in RMS voltage, dBV, dBu, dB, dBFS scale. X axis supports linear, logarithmic and octave scale (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96). Support power spectrum density display. Y axis can be converted to impedance display.

4 Analysis results can be exported as TXT files.

5 Data curve can be printed out directly or saved as BMP files.

6 Fast display refresh rate: about 50 frames per second (tested with a sound card under Windows XP SP2 on IBM ThinkPad R51 Laptop PC with Intel Pentium M processor 1.60 GHz, with sweep time=10 ms and FFT size=1024 and both the Oscilloscope and the Spectrum Analyzer running under "Auto" mode). Thus data are displayed and analyzed in "true" real time.

7 The colors of display, font size, screen refresh rate are configurable.

8 FFT size can be adjusted from 128 to 4194304 points.

9 Allow record length to be different from FFT size. If the FFT size is greater than the record length, then zero(s) will be added at the end of the actual measurement data during FFT computation. If the FFT size is less than the record length, then the measurement data will be split into different segments with the size of each segment equal to the FFT size. Segment overlap percentage can be selected among 0%, 25%, 50%, 75%. The final result will be obtained by averaging the FFT results from all segments.

10 Support 55 window functions: Rectangle, Triangle (or Fejer), Hanning, Hamming, Blackman, Exact Blackman, Blackman Harris, Blackman Nuttall, Flat Top, Exponential, Gaussian, Welch (or Riesz), Cosine, Riemann (or Lanczos), Parzen, Tukey, Bohman, Poisson, Hanning-Poisson, Cauchy, Bartlett-Hann, Kaiser, etc.
11 Display peak frequency with sub-FFT-bin-size accuracy in Amplitude Spectrum display, second peak time delay and corresponding coefficient in Auto Correlation Function display, peak time delay and corresponding coefficient in Cross Correlation Function display, peak frequency and corresponding coefficient in Coherence Function display, peak frequency and corresponding gain and phase in Transfer Function display, peak time and corresponding value in Impulse Response display.

12 Allow the measurement of Total Harmonic Distortion (THD), THD+Noise (THD+N), Signal in Noise and Distortion (SINAD), Signal-to-Noise Ratio (SNR), Noise Level (NL), Total Non-Coherent Distortion+Noise (TNCD), and GedLee Metric in a specified frequency range.

13 Allow the measurement of IMD-SMPTE/DIN, IMD-CCIF1, IMD-CCIF2, Crosstalk, Bandwidth (-3dB), Harmonics, Energy in user defined frequency bands, Peaks, Wow & Flutter, sound loudness, loudness level & sharpness.

14 Support one cursor reader and two markers which stick to the measurement data.

15 Intra-frame processing includes: Remove DC Component, Frequency Compensation, Frequency Weighting (flat, A weighting, B weighting, C weighting, ITU-R 468 weighting), and Smooth via Moving Average. Frequency compensation is achieved via loading a user configurable text-based Frequency Compensation File (*.fcf).

16 Four inter-frame processing methods: None, Peak Hold, Linear Average, Exponential Average. The number of frames (2~200, forever) for peak hold or linear averaging can be specified. The process can be reset during runtime if “forever” is chosen.

17 Five chart types: Line, Scatter, Column, Bar, and Step. Line width is adjustable.

18 Up to five reference curves can be set for each channel. The reference curve can be configured by either copying the current curve, or loading a properly formatted text file or a previously saved reference file from the hard disk. Reference curves can be assigned as High-High, High, Low, Low-Low limits.

19 The data in the graph can be copied into the clipboard as text and later paste into other software such as Microsoft Excel for further analysis. The image of the graph can be copied into the clipboard as Bitmap image and later paste into other software such as Microsoft Word.

20 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.
1.5.3 VIRTINS Signal Generator (Sweep/Arbitrary/Function/Noise/Burst Generator)

1 DAC Hardware Related Specifications

Sound Card Based Systems:

1) Bandwidth: 10 Hz - 200 kHz (sound card dependent).

2) Maximum Output Voltage: about 2 V (sound card dependent).

3) Selectable sampling frequency (up to 768 kHz), sampling bit resolution (8, 16 or 24 bits) and sampling channels (one or two) (sound card dependent).

4) Support calibration of the output channels.

Non Sound Card Based Systems:

Please refer to the respective hardware manual.

2 Support predefined waveforms: Sine, Rectangle, Triangle and Saw Tooth. The duty cycle for a rectangle wave is adjustable.

3 Support non-repetitive pink noise and white noise generation.

4 Support multi-tones generation. A Multi-Tones is a combination of predefined waveforms with different amplitudes, frequencies, and phases. Pink noise and white noise with specified amplitude can also be added into the multi-tones. Maximum 200 tones can be combined in each channel. In addition to the manual configuration method, automatic configuration method is provided to generate multitones that are aligned to FFT bands or fractional octave bands within a specified frequency range.

5 Support arbitrary waveform generation through user defined waveform library. A waveform library is a TXT file containing the coordinates of each point in one cycle of the waveform. There is no limit as to how many points can be used to define a waveform.

6 Support Maximum Length Sequence (MLS) generation. The length can be selected from 127 to 16777215.

7 Support Dual Tone Multi-Frequency (DTMF) generation.

8 Support musical scale tone generation.

9 The predefined waveform, multi-tones and user-defined waveform can be generated at a frequency that sweeps linearly or logarithmically within a specified frequency range and time duration.
10 The predefined waveform, white noise, pink noise, multi-tones, user-defined
waveform and MLS can be generated at an amplitude that sweeps linearly or
logarithmically within a specified amplitude range and time duration.

11 Allow specifying the phase difference between the two channels if the output
signals have the same frequency.

12 The amplitude of the output signal is adjustable.

13 The generated signal can be saved as a WAV file or a TXT file for a duration of
up to 1000 s.

14 The output signal can be looped back partially (i.e. only one channel while the
other channel can be used for field input) or fully (i.e. both channels), via the
software itself, to the input of the oscilloscope for display and analysis in real time.
Synchronized operation between the Signal Generator and the Oscilloscope with
timing accuracy in the same order of the sampling frequency is also supported. It
is possible to specify when to start the Oscilloscope after the Signal Generator is
started.

15 It is possible to add a mask with specified periodic on/off timing to the signal to
be output so that a burst-type signal can be generated. You can choose whether to
phase-lock each burst.

16 Support fade in/out and modulation (AM, FM, PM) of the output signal.

17 Support DDS mode for those devices that supports DDS mode.

18 Support DC offset adjustment for those devices that support it.

19 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8
and above. Currently supported languages are English, French, German, Italian,
Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese
and Korean. It supports only the local language and English under Window 95, 98,
Me and Windows NT.

1.5.4 VIRTINS Multimeter

1 Display the RMS voltage value of the current frame of data in Vrms, dBV or dBu.

2 Display the sound pressure level of the current frame of data in dB, dB(A), dB(B)
or dB(C).

3 Display frequency (via the Frequency Counter), RPM (Revolutions Per Minute),
total counts (via the Counter), duty cycle, F/V voltage (via the Frequency Voltage
Converter), Cycle RMS, Cycle Mean, Pulse Width for the current frame of data.
You are allowed to configure the counter trigger level and the counter trigger
hysteresis in order to rectify the analog signal to rectangular pulses before these
analyses.
4 A frequency divider can be configured for each channel for the Frequency Counter, RPM meter, Counter, F/V converter.

5 Display the RMS, Peak/PP, Crest Factor values for acceleration, velocity, displacement if acceleration, velocity or displacement sensors are used.

6 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.5 VIRTINS Data Logger

1 Provide long time data logging function for 196 Derived Data Points (DDP) and 16 User Defined Data Point (UDDP), including RMS value, Peak Frequency, Sound Pressure Level, RPM, THD, etc.

2 Up to eight data logger windows can be opened and each window can trace up to 8 variables. You can configure which derived variables to be logged.

3 Color of each trace can be configured.

4 The range of Y axis can be configured. Y axis can be displayed in linear or logarithmic scale.

5 X axis is always a time axis with accuracy in millisecond. The span of X axis can be configured. The screen automatically scrolls as new data are continuously fed into the right of the window.

6 Data are logged in text format. Each log file contains a maximum 32767 (configurable) lines of data. The file name reflects the time stamp of that file. Log files can be reloaded into the data logger window for display.

7 Three logging methods: Fastest (i.e. whenever new data are available), Time Interval (i.e. whenever new data are available and the specified time duration has elapsed since the last update), Update Threshold (i.e. whenever new data are available and the change compared with the last update exceeds the specified update threshold).

8 The data in the graph can be copied into the clipboard as text and later paste into other software such as Microsoft Excel for further analysis. The image of the graph can be copied into the clipboard as Bitmap image and later paste into other software such as Microsoft Word.

9 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese
and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.6 VIRTINS Spectrum 3D Plot

1 Support Waterfall Plot and Spectrogram.

2 For Waterfall Plot, the tilt angle of T axis and the height percentage of Y axis are adjustable. Six color palettes are available: No Color, Rainbow, Bluish, Yellowish, Grayscale, Inverted Grayscale.

3 For Spectrogram, five color palettes are available: Rainbow, Bluish, Yellowish, Grayscale, Inverted Grayscale.

4 X axis can be displayed in linear or logarithmic scale.

5 Y axis is displayed in absolute mode in RMS Voltage, dBV, dBu, dB or dBFS.

6 Number of spectral profiles can be set from 10 to 200.

7 Spectral profiles are time stamped with accuracy in millisecond.

8 A 3D cursor reader can be used to display the X, Y, T readings of an actual measurement point. The X-Y profile at that point is highlighted and also displayed in a separate X-Y plot.

9 The data in the graph can be copied into the clipboard as text and later paste into other software such as Microsoft Excel for further analysis. The image of the graph can be copied into the clipboard as Bitmap image and later paste into other software such as Microsoft Word.

10 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.7 VIRTINS Device Test Plan

1 Provides a mechanism for you to configure and conduct your own device test steps. It takes the advantage of the sound card’s (or other ADC/DAC hardware’s) capability of simultaneous input & output, to generate a stimulus to the Device Under Test (DUT) and acquire the response from that device at the same time. Different stimuli can be generated and the response can be analyzed in different ways.

2 Supports 23 instructions with corresponding parameters.
Parameters to be tested can be selected from 196 DDPs and 16 UDDPs, including RMS value, Peak Frequency, Sound Pressure Level, RPM, Gain, THD, etc.

Test results (e.g. Gain vs Frequency, Phase vs Frequency, etc.) can be plotted in up to 8 X-Y plots and reported in one textual log window in real time.

Support batch file processing and batch signal event capturing and storing.

A device test plan can be created, edited, modified, saved, locked, reloaded, executed.

There are two types of device test plans: locked and unlocked. A locked device test plan cannot be modified within the software after it has been created.

Support Pass/Fail check. Support connection with external systems through serial communication.

Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.8 VIRTINS LCR Meter

Can measure the value of an inductor, a capacitor or a resistor, or the impedance of a network of them in a wide range and display the result in big font.

Two types of external connections are supported: serial connection for high impedance measurement, and parallel connection for low impedance measurement. Serial connection uses the sound card’s input impedance as reference, while parallel connection uses an external resistor of a relatively small value as reference.

Support the calibration of the sound card input impedance which may vary with frequency.

The value of the external reference resistor (if any) can be entered.

Test range is displayed and updated when the relevant settings change.

The LCR Meter is a special Device Test Plan with built-in LCR measurement algorithm. The default LCR test plan uses 1 kHz sine wave as the test tone. However, you can configure your own LCR test plans (e.g. with different test tones) if necessary.

Same as other Device Test Plan, the test results can be plotted in up to 8 X-Y plots. The variables for X and Y axes can be configured.
8 Supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Window 95, 98, Me and Windows NT.

1.5.9 VIRTINS DDP Viewer

1 Display the value of a Derived Data Point (DDP) or User Defined Data Point (UDDP) in a standalone window. Maximum 16 windows can be opened.

2 Allow High-High, High, Low, Low-Low alarming. Alarm sounds can be configured. Alarm acknowledgement is supported.

3 Displayed precision can be specified.

4 Allow the user to define a UDDP

5 Support inter-frame processing including linear and exponential average.

6 Support DDP array viewer which can be used to create reports for harmonic analysis and peak analysis, etc..
1.6 Signal Flow Block Diagram

The signal flow block diagram illustrates how the signal is processed and analyzed in the software. It helps you to understand the behavior of the software and even configure your own signal processing and analysis algorithm for a particular application without programming using development tools such as Labview and Matlab. For example, changing the oscilloscope’s SINC interpolation setting for waveform rendering will not affect the Mean, Min., Max., RMS calculation of the signal as these values are calculated before the SINC interpolation. Inter-frame averaging and Intra-frame digital filtering in time domain (Oscilloscope) will affect the subsequent spectral analysis in frequency domain (Spectrum Analyzer).
1.7 Precautions

Signals with high voltage can easily burn your sound card (or your ADC/DAC hardware) or even your computer. Be extremely careful and strictly follow your sound card (or ADC/DAC hardware) Manufacturer's Manual when connecting to external devices. Do not connect to signals with unknown amplitude. If the signal amplitude is high, attenuate it first before connecting it to your sound card (or ADC/DAC hardware).

To avoid personal injury, always follow the usual safety rules when working with electric circuits.

IN NO CASE WILL THE AUTHOR AND THE PUBLISHER OF THE SOFTWARE BE RESPONSIBLE FOR PERSONAL INJURY, HARDWARE AND/OR DATA DAMAGE, PROPERTY DAMAGE OR PROFIT LOSS ARISING FROM USE OR INABILITY TO USE THE SOFTWARE.
2 Oscilloscope

2.1 Overview

This is a dual channel Oscilloscope, providing five types of views:

- Waveform of Channel A and Channel B
- Waveform of Channel A + Channel B
- Waveform of Channel A - Channel B
- Waveform of Channel A × Channel B
- Lissajous Pattern for Channel A and Channel B

Statistical data such as Maximum value, Minimum value, Mean value, Root Mean Square Value are also calculated and displayed. Each frame of data is time stamped with accuracy in millisecond and the time stamp is shown at the lower left corner of the Oscilloscope view.

The displayed waveform can be output directly via the Play or Cyclic Play buttons in the Miscellaneous Toolbar.

The acquired signal can be demodulated (AM, FM, PM), DC removed, half-wave or full-wave rectified, and digitally filtered before any other analyses. The types of digital filters supported are: Low Pass, High Pass, Band Pass, Band Stop and Arbitrary. The class of the filter can be FFT, FIR or IIR.
The Oscilloscope also provides a “Record” Mode which can be used to record data to the hard disk continuously until the recording process is stopped manually or 2 gigabytes of data has been recorded, whichever is earlier. The oscilloscope display can also work in “Roll” mode.

The Oscilloscope can perform waveform conversion among acceleration, velocity and displacement when acceleration, velocity or displacement sensors are used.

The Oscilloscope can display both analog and digital signals in one window and thus can be used as a MSO (Mixed Signal Oscilloscope) when used with a hardware MSO.

The Oscilloscope supports digital persistence display mode, Equivalent Time Sampling (ETS) mode, sinc interpolation between samples, and inter-frame average.

2.2 Trigger Parameters

The above toolbar contains (from left to right):
- **Trigger Mode**, **Trigger Source**, **Trigger Edge**, **Trigger Level**, **Trigger Delay**, **Trigger Frequency Rejection**.

The software supports both hardware trigger and software trigger. For hardware trigger, the triggering capacity is determined by the hardware. Different hardware may have different contents in the above parameters.

For sound card based data acquisition, it is possible to specify a software trigger condition for collecting a frame of data. There are two concurrent processes in this context, one is data sampling and collecting, the other is data analysis and display. Once a frame of data is collected into the PC memory, the software will start immediately to search for the next trigger event in order to collect the next frame of data. Meanwhile, the collected data will be analyzed and then displayed. With the fast PCs nowadays, normally data analysis and display will take less time than data sampling and collecting as the latter one is constrained by the sweep time and cannot benefit from the fast speed of the PCs. In case that the data sampling and collecting process is faster than the data analysis and display process, the latest frame of data will overwrite the previous one even if it has not yet been analyzed and displayed. This is to ensure that data analysis and display will always be performed on the latest collected frame of data.

In order to obtain a stable display for a periodic signal, the trigger parameters must be set properly such that there is only one such trigger condition in one cycle of the signal. The software also features a specially designed algorithm which effectively eliminates the lateral shaking of waveform display due to limited sampling rate compared with the signal frequency.

2.2.1 Trigger Mode
There are four trigger modes:

2.2.1.1 Auto

Depending on the ADC hardware used, the Auto mode here can be the “real” Auto mode or actually the Free Run mode.

The real Auto mode is similar to the Normal mode (see the section below) in that all trigger conditions specified are still in effect, except that a frame of data will be collected even if no trigger has been found after a certain timeout period. In this mode, the display may not be stable even if the signal under test is periodic, due to the fact that each frame of data may not be started at the same trigger position.

In a Free Run mode, frames of data are collected, analyzed and displayed continuously without a trigger. Very fast display refresh rate can be achieved in this mode, however, the display may not be stable even if the signal under test is periodic, due to the fact that each frame of data may not be started at the same trigger position. In this mode, the selection for Trigger Source, Trigger Edge, Trigger Level and Trigger Delay is disabled and these parameters are not used.

For sound card based data acquisition, the Auto mode means the Free Run mode.

2.2.1.2 Normal

A frame of data is collected, analyzed and displayed when the trigger condition specified is met, and this process will keep going until the oscilloscope is stopped.

For sound card based data acquisition, when the sweep time (record length) is very short, the oscilloscope display may become unstable. It is recommended to use Slow Trigger Mode when the sweep time (record length) is less than 500 µs for internal sound card, and 5 ms for external sound card. Note that these recommended values may vary with the sound card used.

2.2.1.3 Single

One frame of data are collected, analyzed and displayed upon the first trigger event. The data acquisition process stops afterwards. This mode is ideal for transient signal recording.

2.2.1.4 Slow

It is similar to the Normal mode, except that the data acquisition hardware will be reinitiated and restarted automatically every time a new frame of data is collected. The display refresh rate is thus slow in this mode.
For sound card based data acquisition, it is recommended to use this mode when the sweep time (record length) is very short and the display becomes unstable in Normal Trigger Mode.

2.2.2 Trigger Source

When only Channel A is sampled, the trigger source is fixed at Channel A and is not selectable.

When both Channel A and Channel B are sampled, the trigger source is selectable, either Channel A or Channel B.

The software also supports EXT (external) trigger and ALT (alternative) trigger if the hardware used supports them. The EXT trigger can be an external digital trigger or an external analog trigger with adjustable trigger level. Under ALT trigger mode, both channels are triggered independently on its own. You can use ALT trigger mode to obtain stable waveform display for two independent periodic signals.

2.2.3 Trigger Edge

Five types of Trigger Edge are available:

Up: When "Up" is selected, a trigger event is found when the signal is crossing the specified Trigger Level from below to above.

Dn (Down): When "Dn" is selected, a trigger event is found when the signal is crossing the specified Trigger Level from above to below.

UD (Up or Down): When “UD” is selected, a trigger event is found when the signal is crossing the specified Trigger Level from below to above, or from above to below.

JP (Jump): When “JP” is selected, a trigger event is found when the amount of change of the signal is greater than the amount specified by the Trigger Level. When the Trigger Level is positive, the change must be “Jump Up”. When the Trigger Level is negative, the change must be “Jump Down”. For example, under this mode, “Trigger Level=100%” means that the signal magnitude must increase by 100% of half of the
ADC full-scale voltage (1/2 Vpp) between two adjacent data points in order to be qualified for a trigger, and “Trigger Level = -100%” means that the signal magnitude must decrease by 100% of half of the ADC full-scale voltage (1/2 Vpp) between two adjacent data points in order to be qualified for a trigger.

DF (Differential): When “DF” is selected, a trigger event is found when the absolute amount of change of the signal is greater than the absolute amount specified by the Trigger Level. Under this mode, Trigger Level can only be adjusted from 0~100%. For example, “Trigger Level=100%” means that the signal magnitude must increase or decrease by 100% of half of the ADC full-scale voltage (1/2 Vpp) between two adjacent data points in order to be qualified for a trigger.

The last three trigger edges are generally only available with software trigger.

2.2.4 Trigger Level

![Trigger Level Slider]

Trigger Level is expressed as a percentage of half of the ADC full-scale voltage (1/2 Vpp). It is adjustable from -100% to 100%, except that when Trigger Edge is “DF”, Trigger Level can only be adjusted from 0 to 100%. The up and down arrows provide adjustment in a step of 1%. For finer adjustment, enter the value directly. Trigger Level can also be adjusted via the Trigger Level Marker described in Section “Trigger Marker”.

2.2.5 Trigger Delay

![Trigger Delay Slider]

Trigger Delay spin box is located on the right hand side of the Trigger Level spin box. It is expressed as a percentage of the Record Length Per Sweep and is adjustable from -100% to 100%. Trigger Delay can also be adjusted via the Trigger Delay Marker described in Section “Trigger Marker”.

2.2.6 Trigger Frequency Rejection
Trigger Frequency Rejection can be used to filter out noises from the trigger signal to prevent false triggering. Depending on the ADC hardware used, the available options can be: NIL (All-Pass), HFR (High Frequency Rejection), NR0~NR4 (Noise Rejection), HN0~HNX (High Frequency Rejection + Noise Rejection). There are different levels of noise rejection. Generally, for Levels 0~4, the hysteresis values are fixed while for Level X, it is user-configurable via [Setting]>[ADC Device]. Please refer to the respective hardware manual for details.

For sound cards (MME and ASIO) and software triggered NI DAQmx cards, the specification of each option is as follows:

Nil: No Rejection
HFR: High Frequency Rejection, cut off at 0.11×[Sampling Frequency]
NR0: Noise Rejection, hysteresis = 1% of half of full scale
NR1: Noise Rejection, hysteresis = 2% of half of full scale
NR2: Noise Rejection, hysteresis = 4% of half of full scale
NR3: Noise Rejection, hysteresis = 8% of half of full scale
NR4: Noise Rejection, hysteresis = 16% of half of full scale
HN0: HFR + NR0
HN1: HFR + NR1
HN2: HFR + NR2
HN3: HFR + NR3
HN4: HFR + NR4
HNX: selectable HFR + adjustable hysteresis = 0% ~ 25% of half of full scale
Note: The specified hysteresis may be modified internally to ensure [Trigger Level (%)] – [Hysteresis (%)] ≥ -100% at rising edge, or [Trigger Level (%)] + [Hysteresis (%)] ≤ 100% at falling edge.

2.3 Sampling Parameters

The above toolbar contains (from left to right):
Sampling Frequency, Sampling Channels, Sampling Bit Resolution, and Record Length Per Sweep.
Sampling Parameters together with the Trigger Parameters determine how the data are sampled and collected. The sampling capability is fully dependent on the ADC hardware used. Different hardware may have different contents in the above parameters.

Once the sampling parameter is specified and "Run" button is clicked, it will attempt to start sampling using the specified sampling parameters. An error message will pop up if the specified sampling parameters are not supported by the ADC hardware.

Note that some sound cards may not generate an error message even if the sampling frequency specified exceeds the limit. Please check your sound card manual before you use a sampling frequency greater than 44100 Hz, otherwise measurement error may be introduced.

2.3.1 Sampling Frequency

For a sound card based system, the following sampling frequencies can be selected:
- 2kHz
- 4kHz
- 8kHz
- 11.025kHz
- 16kHz
- 22.05kHz
- 32kHz
- 44.1kHz
- 48kHz
- 64kHz
- 88.2kHz
- 96kHz
- 176.4kHz
- 192kHz
- 384kHz
- 768kHz

In addition, you can enter a frequency value directly when the Oscilloscope is not running.

2.3.2 Sampling Channels

For a sound card based system, two options are available:

- A
 Only Channel A is sampled.
2.3.3 Sampling Bit Resolution

For a sound card based system, three options are available: 8Bit, 16Bit, 24Bit.

2.3.4 Record Length per Sweep

Record Length per Sweep (or Per Frame) determines how many points will be captured per sweep for each channel. Normally you do not need to specify the Record Length directly as it is implicitly determined by the Sweep Time and the Sampling Frequency (Record Length = Sweep Time × Sampling Frequency). When you change the Sweep Time or Sampling Frequency, the Record Length will be automatically updated accordingly. Under some circumstance, you may want to explicitly specify the record length, for example, you may want the Record Length to be an integer multiple of 10 or an exponent of 2. Then you can either select or enter the Record Length you want directly. The sweep time will then be automatically updated accordingly so that all data points can be accommodated in one sweep.

There are 15 options available for you to select: 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 60000, 500000, 1000000.

Alternatively, you can enter any number for the Record Length as long as the sweep time is less than 500 s and the computer memory allows.
Changing Record Length directly is disabled at the very beginning in order to avoid confusion to beginners. It can be enabled via [Setting] > [Display] > [Enable Record Length change via "Point" in Sampling Parameter Toolbar].

The maximum Record Length that can be set is limited by the ADC hardware buffer size. You should always keep this rule in mind when you change the Sweep Time or Sampling Frequency which will change the Record Length indirectly or when you change the Record Length directly. This rule is enforced by the software. For example, if the requested Record Length exceeds the ADC hardware buffer size when you change the Sweep Time, then the software will attempt to lower the Sampling Frequency in order to keep the Record Length within the ADC hardware buffer size. On the other hand, if the requested Record Length exceeds the ADC hardware buffer size when you change the Sampling Frequency, then the software will attempt to lower the Sweep Time in order to keep the Record Length within the ADC hardware buffer size. If the software is unable to enforce the rule, an error message will pop up.

The software also enforces a minimum Record Length when you change the Sweep Time or Sampling Frequency. This is to ensure that a sufficient number of data points are acquired in one frame. If the requested Record Length is lower than the minimum Record Length, then the software will adjust the Sampling Frequency or Sweep Time in order to keep the Record Length above the minimum value. It should be noted that changing the Record Length directly is considered as an intended action and thus is not affected by this rule. Different ADC hardware may have different minimum Record Length values which are set inside the software.

2.4 Miscellaneous Parameters

The above toolbar contains (from left to right):
- Invert Input Signal button,
- Channel A Zeroing button,
- Channel B Zeroing button,
- Windows Recording Control,
- Windows Volume Control,
- Play button,
- Cyclic Play button,
- ADC Channel A Coupling Type,
- ADC Channel B Coupling Type,
- ADC Channel A Range,
- ADC Channel B Range,
- Probe A Current Switch Position,
- Probe B Current Switch Position,
- and Input Peak Level Indicators for Channel A and Channel B.

2.4.1 Invert Input Signal

If the button is depressed, the input signal will be inverted by the software just after A/D conversion, e.g. +1V will become -1V after the inversion. All the subsequent processing such as triggering, data analysis and display will be performed based on the inverted signal.

The button is in released state by factory default.
2.4.2 Zeroing

If the input of a channel is connected to its ground, the oscilloscope should display a straight horizontal line at 0 V. However, this may not always be the case. Some ADC hardware, if not compensated by software, may display an offset voltage when their input is actually at the ground level. Therefore, there is a need to compensate this offset for ADC hardware.

A: This button will only be enabled when the oscilloscope is in running state and the Trigger Mode is "Auto". Once pressed, a message box will pop up with three options: Yes, No, Cancel. You will need to connect the input for Channel A to the ground before you choose Yes, in order to set the ground level for Channel A to zero. If you select No, then the ground level will be reset to its default value (i.e. no compensation). You may choose Cancel to cancel the operation.

B: This button will only be enabled when the oscilloscope is in running state, the Trigger Mode is "Auto" and the Sampling Channels is "A&B". Once pressed, a message box will pop up with three options: Yes, No, Cancel. You will need to connect the input for Channel B to the ground before you choose Yes, in order to set the ground level for Channel B to zero. If you select No, then the ground level will be reset to its default value (i.e. no compensation). You may choose Cancel to cancel the operation.

2.4.3 Windows Recording Control

2.4.3.1 Recording Control before Windows Vista
A typical Recording Control of Windows XP (or other Windows versions before Windows XP) is shown as above. Different sound cards may have different items in the Recording Control.

2.4.3.1.1 Sound Card Selection

When accessing the Windows Recording Control from the Windows Control Panel, you need to choose the sound card used for data acquisition first if multiple sound cards exist.

When pressing the button in the Miscellaneous Toolbar of the software, the Recording Control of the sound card used by the software for data acquisition will be opened.

For this software, the Recording Control is used to select the input source and adjust its internal gain. The selection of sound card is done via [Setting]>[ADC Device]>[Device No.].

2.4.3.1.2 Input Source Selection

From the Recording Control, you can configure the input sources for data acquisition. The input source can be CD Player, Microphone, Line In, Wave Out Mix, etc, depending on the sound card used. To test an external electrical signal, either Mic Input or Line In should be used. Wave Out Mix (sometimes called “What U Hear” or something similar) can be used to get the signal being output by the sound card. You can select it as the input source for data acquisition in order to analyze and display what is being output by the Signal Generator. This, in fact, switches the software into simulation mode with the loopback at the sound card mixer level.
2.4.3.1.3 Input Gain Adjustment

The input gain can be adjusted by moving the volume slider corresponding to the input source selected for data acquisition. For Microphone, it is usually possible to further adjust the gain by selecting/removing Mic Boost in the Advanced Controls for Microphone as shown below. Normally selecting Mic Boost will increase the internal gain by 10 times (i.e. 20dB).

![Advanced Controls for Microphone](image)

2.4.3.2 Recording Control under Windows Vista
There are some changes of the Recording Control in Windows Vista. Under Windows Vista, you do not select a sound card first and then open its Recording Control which contains all its input sources and their gain controls. Instead, you select a so-called input endpoint (i.e. a particular input source on a particular sound card, for example, the microphone of a particular sound card) first in the Windows Sound Recording control panel (see the figure above) and then open its property window (see the figure below) to adjust its gain.
2.4.3.2.1 Input Endpoint Selection

When pressing the button in the Miscellaneous Toolbar of the software, the Windows Sound Recording control panel will be opened.

For this software, the Windows Sound Recording control panel is used to adjust the gain of the selected input endpoint. The selection of the input endpoint is done via [Setting]>[ADC Device]>[Device No.]. Note that only the enabled input endpoints will be available for selection, and any on-the-fly change (e.g. enable/disable, set as default) of the input endpoints when the Oscilloscope is running may cause the software to stop data acquisition. You will then need to restart the data acquisition if necessary.

2.4.3.2.2 Input Gain Adjustment

The gain of the selected input endpoint can be adjusted by selecting the input endpoints in the Windows Sound Recording control panel and then opening its property window to adjust its gain.
2.4.4 Windows Volume Control

2.4.4.1 Volume Control before Windows Vista

A typical Windows Volume Control is shown as above. Different sound cards may have different items in the Volume Control.

2.4.4.1.1 Sound Card Selection

When accessing the Windows Volume Control from the Windows Control Panel, you need to choose the sound card used for signal output first if multiple sound cards exist.

When pressing the button in the Miscellaneous Toolbar of the software, the Volume Control of the sound card used by the software for signal output will be opened.

For this software, the Volume Control is used to select the output source and adjust the output volume. The selection of sound card is done via [Setting]>[DAC Device]>[Device No.].

2.4.4.1.2 Output Source Selection

From the Volume Control, you can configure the output sources for signal output. For the Signal Generator of the software, all output sources for signal output should be muted except the Volume Control and Wave, in order to minimize the unwanted noises.

2.4.4.1.3 Output Volume Adjustment

The output volume can be adjusted via either the Volume Control slider or Wave slider.
2.4.4.2 Volume Control under Windows Vista

Under Windows Vista, you select a so-called output endpoint (i.e. a particular output destination on a particular sound card, for example, the “Speakers” of a particular sound card) first in the Windows Sound Playback control panel (see the figure above) and then open its property window (see the figure below) to configure its output source and output volume.
2.4.4.2.1 Output Endpoint Selection

When pressing the button in the Miscellaneous Toolbar of the software, the Windows Sound Playback control panel will be opened.

For this software, the Windows Sound Playback control panel is used to select the output source and adjust its output volume. The selection of the output endpoint is done via [Setting]>[DAC Device]>[Device No.].

2.4.4.2.2 Output Source Selection

From the property window of the selected output endpoint, you can configure the output sources for signal output. For the Signal Generator of the software, all output sources for signal output should be muted except the master Volume Control, in order to minimize the unwanted noises.

2.4.4.2.3 Output Volume Adjustment

The output volume can be adjusted via the master Volume Control slider.
2.4.5 Waveform Play

The waveform displayed in the Oscilloscope can be played (output) by pressing the button in the Miscellaneous Toolbar.

Note that this playback is possible only if the sampling rate and bit resolution of the waveform is compatible with the Windows default sound card.

2.4.6 Waveform Cyclic Play

The waveform displayed in the Oscilloscope can be cyclically played (output) by pressing the button in the Miscellaneous Toolbar. Releasing this toggle button will stop the cyclic playing.

Note that this playback is possible only if the sampling rate and bit resolution of the waveform is compatible with the Windows default sound card.

2.4.7 Coupling Type for ADC Channels A & B

The left one is for ADC Channel A and the right one is for ADC Channel B.

Almost all sound cards are AC coupled. For other ADC hardware, the options can be AC, DC or GND, depending on the hardware used.

2.4.8 Range for ADC Channels A & B

The left one is for ADC Channel A and the right one is for ADC Channel B.

For sound cards, calibration is normally required in order to determine their ADC ranges, and their ADC ranges change with their input gain setting which is adjustable via the Windows Recording Control.

Calibration is normally not required for other ADC hardware with the ADC ranges explicitly specified. If the hardware supports multiple ADC ranges, the above combo boxes will become selectable.

2.4.9 Current Switch Position for Probes A & B
The two combo boxes on the right hand side of "Probe" in the Miscellaneous Toolbar allow you to select the probe attenuation factors corresponding to the current attenuation switch position on your probes or test leads. The left one is for Channel A and the right one is for Channel B. You can have at most three switch positions. The dedicated sound card oscilloscope probe supplied by Virtins Technology is best suited for sound card based systems.

Please refer to: *VIRTINS Sound Card Oscilloscope Probe Manual*.

Note that these two combo boxes only allow you to select the corresponding attenuation factors, they will not set the switch position on the probes for you. You have to set it manually.

The actual attenuation factors can be accessed and set via [Setting]->[Calibration] and will be introduced later in this document.

2.4.10 Input Peak Level Indicator for ADC Channels A & B

The above two Input Peak Level Indicators reflect the peak level of the frame of data acquired, the upper one is for Channel A and the lower one is for Channel B. It is expressed as a percentage of the ADC range. The color of the indicator changes gradually from green to orange as the percentage goes from 0% to 100% (i.e. 0 dBFS).

If the Input Peak Level is equal to 100%, it is recommended to lower the input gain of the hardware, increase external attenuation, or lower the signal under test directly, in order to avoid peak clipping from happening.

2.5 View Parameters

View Parameters determine how the collected data are displayed and analyzed.

2.5.1 Sweep Time (T)
There are 49 options for Sweep Time (T). They are 1 ns, 2 ns, 4 ns, 5 ns, 10 ns, 20 ns, 40 ns, 50 ns, 100 ns, 200 ns, 400 ns, 500 ns, 1 µs, 2 µs, 4 µs, 5 µs, 10 µs, 20 µs, 40 µs, 50 µs, 100 µs, 200 µs, 400 µs, 500 µs, 1 ms, 2 ms, 4 ms, 5 ms, 10 ms, 20 ms, 40 ms, 50 ms, 100 ms, 200 ms, 400 ms, 500 ms, 1 s, 2 s, 4 s, 5 s, 10 s, 20 s, 40 s, 50 s, 100 s, 200 s, 400 s, 500 s, Record.

This parameter is applicable to all types of views in the Oscilloscope.

Note that if you select longer sweep time, it will take longer time for the acquired data and analyzed results to be shown on the screen. When the sweep time is long, you can tick the “Roll” checkbox in the Sampling Parameter Toolbar in order to get real time update of the screen. Please refer to the section for Roll Mode for details.
If “Record” is chosen, the oscilloscope will enter into Record Mode. Please refer to the section for Record Mode for details.

2.5.2 Sweep Time Multiplier

<table>
<thead>
<tr>
<th>Multiplier</th>
<th>T axis Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>×1</td>
<td>Full range</td>
</tr>
<tr>
<td>×2</td>
<td>1/2 of full range</td>
</tr>
<tr>
<td>×5</td>
<td>1/5 of full range</td>
</tr>
<tr>
<td>×10</td>
<td>1/10 of full range</td>
</tr>
<tr>
<td>×20</td>
<td>1/20 of full range</td>
</tr>
<tr>
<td>×50</td>
<td>1/50 of full range</td>
</tr>
<tr>
<td>×100</td>
<td>1/100 of full range</td>
</tr>
<tr>
<td>×200</td>
<td>1/200 of full range</td>
</tr>
<tr>
<td>×500</td>
<td>1/500 of full range</td>
</tr>
<tr>
<td>×1000</td>
<td>1/1000 of full range</td>
</tr>
</tbody>
</table>

The Sweep Time Multiplier is the zooming factor for T axis. There are 10 options available: ×1, ×2, ×5, ×10, ×20, ×50, ×100, ×200, ×500, ×1000.

When "×1" is selected, the full range of the Sweep Time is displayed over the width of the view.

If you change the Sweep Time Multiplier to "×N" which is greater than 1, then only 1/N of the full range of the Sweep Time is displayed over the width of the view, with a horizontal scrollbar at the bottom which allows you to scroll over the full range of the Sweep Time.

This parameter is applicable to all types of views in the Oscilloscope except Lissajous Pattern display.

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor just below T axis. Left click to zoom in and right click to zoom out. Zoom in/out can also be performed using the mouse wheel. Mouse wheel down & scroll will return the Multiplier to "×1".

2.5.3 Channel A Display Range
You can specify the Display Range for Channel A. Available options are: Off, Auto, ±1 n, ±2 n, ±5 n, ±10 n, ±20 n, ±50 n, ±100 n, ±200 n, ±500 n, ±1 µ, ±2 µ, ±5 µ, ±10 µ, ±20 µ, ±50 µ, ±100 µ, ±200 µ, ±500 µ, ±1 m, ±2 m, ±5 m, ±10 m, ±20 m, ±50 m, ±100 m, ±200 m, ±500 m, ±1 µ, ±2 µ, ±5 µ, ±10 µ, ±20 µ, ±50 µ, ±100 µ, ±200 µ, ±500 µ, ±1 m, ±2 m, ±5 m, ±10 m, ±20 m, ±50 m, ±100 m, ±200 m, ±500 m. Note that the engineering unit of the above options is determined by the engineering unit of the sensor for Channel A, which can be set via [Setting]>[Calibration]>[Sensor]>[Unit].

When "Off" is selected, the signal in Channel A will not be displayed in the Oscilloscope. When "Auto" is selected, the Display Range for Channel A will be set automatically by the software based on the following formula:
Display Range = the nearest integer that is greater than the value of [ADC Range] / [Sensor Sensitivity]

where the sensor sensitivity is set via [Setting]>[Calibration]>[Sensor]>[Sensitivity].

This parameter is applicable to all types of views in the Oscilloscope. It should be noted that in "Channel A + Channel B" view, this voltage display range is for "Channel A + Channel B". Similarly, in "Channel A – Channel B" view, it is for "Channel A – Channel B", and in "Channel A × Channel B" view, it is for "Channel A × Channel B".

2.5.4 Channel A Multiplier

The Multiplier for Channel A is the zooming factor for A axis. There are 9 options available: Off, ×1, ×2, ×5, ×10, ×20, ×50, ×100, ×200.

When "Off" is selected, the full Display Range for Channel A is displayed over the height of the view.

When "×1" is selected, initially the full range is displayed over the height of the view with a vertical scroll bar on the left of the view. You can use the scroll bar to move the data curve for Channel A up and down.

If you change the multiplier to "×N" which is greater than 1, then only 1/N of the full range is displayed over the height of the view, with a vertical scrollbar on the left of the view. You can use the scroll bar to scroll over the full Display Range.

This parameter is applicable to all types of views in the Oscilloscope except Lissajous Pattern display. It should be noted that in "Channel A + Channel B" view, this parameter is for "Channel A + Channel B". Similarly, in "Channel A – Channel B" view, it is for "Channel A – Channel B", and in "Channel A × Channel B" view, it is for "Channel A × Channel B".

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor on the left side of A axis. Left click to zoom in and right click to zoom out. Zoom in/out can also be performed using SHIFT + mouse wheel. SHIFT + mouse wheel down & scroll will return the Multiplier to "Off".

Off
×1
×2
×5
×10
×20
×50
×100
×200

Click to zoom in and right click to zoom out.
2.5.5 View Type

There are five types of views in the Oscilloscope: A&B, A+B, A-B, A×B, A|B. Changing the View Type will affect the calculation of the following Derived Data Points (DDPs) of Channel A in the Oscilloscope:

(1) Max_A(EU): Maximum value for Channel A or combined
(2) Min_A(EU): Minimum value for Channel A or combined
(3) PP_A(EU): Peak-to-Peak value for Channel A or combined
(4) Mean_A(EU): Mean value for Channel A or combined
(5) RMS_A(EU): RMS value for Channel A or combined
(6) PWR_A(W): Power value (= RMS² / Load Factor) for Channel A or combined

However, it does not affect the calculation of other DDPs of Channel A in the Oscilloscope:

(1) PeakLevelPercent_A(%): Peak Level in Percentage for Channel A
(2) PeakLeveldBFS_A: Peak Level in dBFS for Channel A
(3) WaveformComparisonH_A: Waveform High or High-High Limit Alarm for Channel A
(4) WaveformComparisonL_A: Waveform Low or Low-Low Limit Alarm for Channel A

Channel B has all the above mentioned DDPs. The calculation of them is not affected by the selection of View Type.

2.5.5.1 A&B
Waveform display of Channel A and Channel B

2.5.5.2 A+B
Waveform display of Channel A + Channel B

2.5.5.3 A-B
Waveform display of Channel A - Channel B

2.5.5.4 A×B
Waveform display of Channel A × Channel B.

As an example, the following figure shows how to use this function to measure power factor. The instantaneous voltage and current are measured by Channel A and Channel B respectively. The measured RMS voltage in Channel A is 707 mV while the measured RMS current in Channel B is 707 mA. This results in an apparent power of 0.707(V)×0.707(A)=0.50(W). The real power is obtained by the mean value of
A×B and reads 0.354W here. Therefore the power factor is: 0.354/0.50=0.71. In this example, the voltage and current are both sine waves and have a phase difference of 45°. Thus the power factor can also be given by: cos(45°)=0.71. The Panel Setting File of this measurement can be found in the software’s installation directory\psf\PowerFactor_FFT32768_SR48000.psf.

2.5.5.5 A|B (XY Mode, Lissajous Pattern)
Lissajous Pattern display for Channel A and Channel B.

The following figure illustrates the Lissajous Pattern of a 1 kHz sine wave in Channel A and 4 kHz sine wave in Channel B.
2.5.6 Channel B Display Range
You can specify the Display Range for Channel B. Available options are: Off, Auto, ±1 n, ±2 n, ±5 n, ±10 n, ±20 n, ±50 n, ±100 n, ±200 n, ±500 n, ±1 µ, ±2 µ, ±5 µ, ±10 µ, ±20 µ, ±50 µ, ±100 µ, ±200 µ, ±500 µ, ±1 m, ±2 m, ±5 m, ±10 m, ±20 m, ±50 m, ±100 m, ±200 m, ±500 m, ±1 k, ±2 k, ±5 k, ±10 k, ±20 k, ±50 k, ±100 k, ±200 k, ±500 k, ±1 M, ±2 M, ±5 M, ±10 M, ±20 M, ±50 M, ±100 M, ±200 M, ±500 M. Note that the engineering unit of the above options is determined by the engineering unit of the sensor for Channel B, which can be set via [Setting]>[Calibration]>[Sensor]>[Unit].

When "Off" is selected, the signal in Channel B will not be displayed in the Oscilloscope. When "Auto" is selected, the Display Range for Channel B will be set automatically by the software based on the following formula:
\(\text{Display Range} = \text{the nearest integer that is greater than the value of} \ \frac{[\text{ADC Range}]}{[\text{Sensor Sensitivity}]} \)

where the sensor sensitivity is set via [Setting] > [Calibration] > [Sensor] > [Sensitivity].

For single channel data, this control will be disabled.

This parameter is only applicable to two types of views: Channel A & Channel B and Lissajous Pattern. It is disabled in the other two types of views.

2.5.7 Channel B Multiplier

<table>
<thead>
<tr>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
</tr>
<tr>
<td>(\times 1)</td>
</tr>
<tr>
<td>(\times 2)</td>
</tr>
<tr>
<td>(\times 5)</td>
</tr>
<tr>
<td>(\times 10)</td>
</tr>
<tr>
<td>(\times 20)</td>
</tr>
<tr>
<td>(\times 50)</td>
</tr>
<tr>
<td>(\times 100)</td>
</tr>
<tr>
<td>(\times 200)</td>
</tr>
</tbody>
</table>

The Multiplier for Channel B is the zooming factor for B axis. There are 9 options available: Off, \(\times 1 \), \(\times 2 \), \(\times 5 \), \(\times 10 \), \(\times 20 \), \(\times 50 \), \(\times 100 \), \(\times 200 \).

When "Off" is selected, the full Display Range for Channel B is displayed over the height of the View.

When "\(\times 1 \)" is selected, initially the full range is displayed over the height of the view with a vertical scroll bar on the right of the view. You can use the scroll bar to move the data curve for Channel B up and down.

If you change the multiplier to "\(\times N \)" which is greater than 1, then only \(1/N \) of the full range is displayed over the height of the view, with a vertical scrollbar on the right of the view. You can use the scroll bar to scroll over the full Display Range.

This parameter is only applicable to one types of view: Channel A & Channel B. It is disabled in other types of views.

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor on the right side of B axis. Left click to zoom in and right click to zoom out. Zoom in/out can also be performed using CTRL + mouse wheel. CTRL + mouse wheel down & scroll will return the Multiplier to "Off".

2.6 Menu
The Oscilloscope has its own menu and additional functions can be accessed through the menu items in each submenu. Click anywhere within the Oscilloscope window will switch the software’s main menu to the Oscilloscope menu.

2.6.1 File SubMenu

<table>
<thead>
<tr>
<th>File Setting Instrument Window Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Ctlr+N</td>
</tr>
<tr>
<td>Open... Ctlr+O</td>
</tr>
<tr>
<td>Open Frame by Frame...</td>
</tr>
<tr>
<td>Import...</td>
</tr>
<tr>
<td>Combine...</td>
</tr>
<tr>
<td>Extract...</td>
</tr>
<tr>
<td>Close</td>
</tr>
<tr>
<td>Save Ctrl+S</td>
</tr>
<tr>
<td>Save As...</td>
</tr>
<tr>
<td>Oscilloscope Export...</td>
</tr>
<tr>
<td>Oscilloscope Print...</td>
</tr>
<tr>
<td>Oscilloscope Print Preview</td>
</tr>
<tr>
<td>Ctrl+P</td>
</tr>
</tbody>
</table>

This submenu provides access to the file operation and printing functions.

2.6.1.1 New (File SubMenu) (ALT-F-N, CTRL-N)

The command is used to create a new, blank document for measurement, with the system default panel setting fixed in the factory. The new document will be used to hold the latest collected frame of data.

This command is also available through the button in the Instrument Toolbar. When there is no Oscilloscope, Spectrum Analyzer and Multimeter opened, click the above "Oscilloscope" button will open a new document without changing the current Trigger and Sampling Parameters.

2.6.1.2 Open (File SubMenu) (ALT-F-O, CTRL-O)

The command is used to open an existing document. Only standard and extensible WAV files in PCM format can be opened. An error message will pop up if the file format is not recognizable. WAV files with PCM format are widely supported by many software products. You can use a third-party software program such as "Sound Recorder" provided in Windows to record the data and then use Multi-Instrument to display and analyze the data.
This command is also available through the button in the Sampling Parameter Toolbar. Only one document can be opened at a time.

If the file to be opened is too big to be held in one Oscilloscope frame, the software will automatically open the file frame by frame (see description below).

2.6.1.3 Open Frame by Frame (File SubMenu) (ALT-F-F)

The command is the same as the Open command described previously, except that it opens a WAV file frame by frame. Therefore it is particularly useful for opening a long WAV file. The frame size (i.e. Record Length Per Sweep) should be set first before executing this command. For example (see figure below), if the Record Length Per Sweep is 441 and the WAV file has 44100 points, then the file will be split into 100 frames with each frame contains 441 points. Under this mode, the Long Wave File Navigation Toolbar becomes visible. The meaning of each component in this toolbar is listed as follows:

- : Frame Up, if pressed, the current frame position will move one frame backward if the beginning of the file has not been reached yet.
- : Frame Down, if pressed, the current frame position will move one frame forward if the end of the file has not been reached yet.
- : Frame Auto Scroll, a toggle button, if pressed down, the current frame position will move forward frame by frame with or without overlap automatically till the end.
of the file is reached. Every frame will be analyzed and displayed according to the current settings, and no frame will be skipped. This feature is very useful for performing post-analysis such as Spectrum 3D Plot and Data Logging automatically on a long WAV file. During the auto scrolling process, the Frame Up and Frame Down buttons are disabled. If the Frame Auto Scroll button is released up, the auto scrolling process will stop, and the Page Up and Page Down buttons will be enabled again.

: Current Frame Position slider. It reflects the position of the current frame with regards to the length of the file. It can also be used to adjust the position of the current frame.

: Current Frame Position/Length of the File. For example, 0.08s/1s means that the current frame starts at 0.08 second and the length of the file is 1 second.

: Frame Overlap Percentage. This parameter specifies the inter-frame overlap percentage and has effect on Frame Down, Frame Up, Frame Auto Scroll commands. It can be set from 0% to 99%. As a comparison, the Window Overlap Percentage in the Spectrum Analyzer View Toolbar specifies the intra-frame overlap percentage of FFT segments. You can combine the two overlap percentages to achieve a certain overall overlap scheme for FFT analysis.

2.6.1.4 Import (File SubMenu) (ALT-F-I)

This command is used to import data from a properly formatted TXT file. The following illustrates the format of the TXT file for single channel and dual-channel cases.

(1) Format for Single Channel:

Example:

```
;Data Points
;Sampling Frequency (Hz) = 44100
;Sampling Bit Resolution (Bits) = 16
;Sampling Channels = 1
;A: Full-scale Voltage (V) = 1
;A: Sensor Sensitivity (V/V) = 1
;Total Data Points = 441
;Digital Channels = 0
1.0
2.0,141968
3.0,281097
……
439,-0.41449
440,-0.281097
441,-0.141968
```
(2) Format for Dual Channels:

Example:

```
;Data Points
;Sampling Frequency (Hz) = 44100
;Sampling Bit Resolution (Bits) = 16
;Sampling Channels = 2
;A: Full-scale Voltage (V) = 1
;A: Sensor Sensitivity (V/V) = 1
;B: Full-scale Voltage (V) = 1
;B: Sensor Sensitivity (V/V) = 1
;Total Data Points = 441
;Digital Channels = 0
1,0,0
2,0.141968,-0.141968
3,0.281097,-0.281097
……
439,-0.41449,0.41449
440,-0.281097,0.281097
441,-0.141968,0.141968
```

The first few lines (start with “;”) form the header, the values on the right hand side of “=” are important, they specify the Sampling Frequency (Hz), Sampling Bit Resolution (Bits), Number of Sampling Channels, Full-scale Voltage (V), Sensor Sensitivity (V/V), and Total Number of Data Points. Note that the unit of the Sensor Sensitivity is expressed as [ADC Engineering Unit] / [Sensor Engineering Unit]. The software supports two kinds of ADC Engineering Units, Voltage (V) and Ampere (A), depending on the ADC hardware used. The Sensor Engineering Unit can be configured freely.

The header lines are followed by the data lines. Each data line contains two (single channel) or three (dual channels) comma separated variables. The first variable is the sequential number, and the second and third variables are the data for Channel A and Channel B respectively. The absolute values of all the data must be lower than the value of [Full-scale Voltage/Ampere] / [Sensor Sensitivity] specified in the header lines.

In addition to the standard format described above, the TXT files exported by the Oscilloscope and the Signal Generator, which have a slightly different format than the above one (i.e. one more column for time information), can also be imported for analysis.

Some sample files are provided in the WAV directory of the software and can be used as templates.

2.6.1.5 Combine (File SubMenu) (ALT-F-B)
This command is used to combine data from individual channels of two WAV files. One WAV file must be opened first. Then you can load the data from either channel of the second WAV file and use them to replace/combine the data in either channel of the currently opened WAV file.

WAV files that can be combined must have less than or equal to two channels' data, with the same sampling frequency and the same sampling bit resolution. The record length of the second WAV file must be less than or equal to that of the first WAV file.

2.6.1.6 Extract (File SubMenu) (ALT-F-T)

This command is used to extract data from the currently opened WAV file and save them into a new WAV file.

![Extract Data Window]

You can either specify the time range or the point number range to extract data. The range can also be specified by placing two markers in the Oscilloscope. Pressing "Save as" to store the extracted data to a WAV file.

2.6.1.7 Close (File SubMenu) (ALT-F-C)

This command is used to close an opened document. If the document content has been changed and the change has not yet been saved, a message box will pop up to ask whether you want to save the change or not.

2.6.1.8 Save (File SubMenu) (ALT-F-S, CTRL-S)

This command is used to save an opened document. If the document is new, then you will be prompted to give a file name for the document.

This command is also available through the button in the Sampling Parameter Toolbar. This function is disabled when the document is empty.

2.6.1.9 Save As (File SubMenu) (ALT-F-A)

This command is used to save an opened document with a specified new file name. This function is disabled when the document is empty.
2.6.1.10 Oscilloscope Export (File SubMenu) (ALT-F-E)

This command is used to export either the measured data as a TXT file or the currently displayed graph as a BMP file. When clicked, a "Save As" window will pop up. You can specify whether you want to export as a TXT file or a BMP file by selecting "Text File (*.txt)" or "Bitmap File (*.bmp)" in the "Save as type" combo box. The exported text files can be imported into third party software such as Microsoft Excel for further processing and analysis.

This function is disabled when the document is empty.

2.6.1.11 Oscilloscope Print (File SubMenu) (ALT-F-P, CTRL-P)

This command allows you to print the currently displayed graph to a printer.

This command is also available through the button in the Sampling Parameter Toolbar. This function is disabled when the document is empty.

2.6.1.12 Oscilloscope Print Preview (File SubMenu) (ALT-F-V)

This command allows you to have a preview before printing. This function is disabled when the document is empty.

2.6.1.13 Recent File (File SubMenu)

Up to four recently opened files will be remembered. You can directly open them from the Recent File List.

2.6.1.14 Exit (File SubMenu) (ALT-F-X)

The program will exit upon this command.

2.6.2 Setting SubMenu
This submenu provides access to various setting functions.

2.6.2.0 Restore to Factory Default (Setting SubMenu) (ALT-S-U)

Refer to Section 1.3.1.1.

2.6.2.1 ADC Device (Setting SubMenu) (ALT-S-A)

This dialog is used to select and configure the current ADC device used by the software. You must make sure the device is already connected to the computer before selection.

The device models available for selection are configured via [Setting]->[ADC Device Database] which will be described later. Once you select a device model in the Device
Model combo box, the rest of parameters will be updated accordingly. If multiple devices in the same device category exist in the system, then you can select one of them via the Device No. combo box. You may also need to select the Trigger Type, Device Channel, Range, Coupling Type and Terminal Type, etc., depending on the device model selected. Please refer to Section “ADC Device Database” for detailed description of these items.

The selection for Range and Coupling Type is also available in the Miscellaneous Toolbar.

Multi-Instrument software supports two logic ADC channels, A and B. If the device has more than two physical ADC device channels, then you need to assign two of them to the two logic channels.

In addition to the analog input channels, some ADC devices such as VT DSO-2810 and VT DSO-2810E, have digital input channels. You can choose to display the signals from the digital input channels in the oscilloscope view by checking the respective checkboxes. It may be possible to adjust the thresholds for digitizing the analog signals connected to the digital input channels, depending on the hardware used. The figure below is an example of the mixed signal display.

In the Miscellaneous section of the ADC Device dialog, there are two hardware-specific options: (1) Effective Bit Resolution Enhancement (2) Trigger Master. Please refer to the respective hardware manual for details.

In the Trigger Frequency Rejection HNX section, you can customize the HNX option in the Trigger Frequency Rejection combo box in the Sampling Parameter Toolbar. You can specify (1) whether to incorporate the high frequency rejection (2) the noise rejection hysteresis in percentage. Please refer to the respective hardware manual for details.

The settings here will be applied and saved if the OK button is pressed.
2.6.2.2 DAC Device (Setting SubMenu) (ALT-S-E)

This dialog is used to select and configure the current DAC device used by the software. You must make sure the device is already connected to the computer before selection.

The device models available for selection are configured via [Setting]>[DAC Device Database] which will be described later. Once you select a device model in the Device Model combo box, the rest of parameters will be updated accordingly. If multiple devices in the same device category exist in the system, then you can select one of them via the Device No. combo box. You may also need to select the Device Channel, Range, etc., depending on the device model selected. Please refer to Section “DAC Device Database” for detailed description of these items.

Multi-Instrument software supports two logic DAC channels, A and B. If the device has more than two physical DAC device channels, then you need to assign two of them to the two logic channels.

Some ADC devices have a Probe CAL output for oscilloscope probe calibration. The Probe CAL signal is normally a 1kHz ~ 10kHz square wave. During probe calibration, the Probe CAL signal is injected into the oscilloscope via the probe. One can fine tune the compensation trimmer on the probe such that the waveform displayed on the oscilloscope screen is “square” and not distorted, i.e. neither over compensated nor under compensated. You can choose to output either Rectangle or MLS signal. When MLS is selected, the frequency value here refers to the clock frequency of the MLS generator rather than the output signal frequency. Normally the Probe CAL signal output is enabled. You can disable the signal output by un-ticking the checkbox. Please refer to the respective hardware manual for details.

The DDS Interpolation and External Trigger options in the above dialog are also hardware specific. A DDS DAC device uses a lookup table (i.e. DDS buffer) to hold
the shape of the signal to be generated. The DDS output suffers from the limited number of entries in the lookup table. The output value “jumps” when going from one entry to the next, introducing unwanted high frequencies in the output signal. This adverse effect may not be discernible when the output signal frequency is high, but becomes sensible as the output signal frequency goes down. DDS interpolation can be used to fix or alleviate this problem. Instead of using the value stored in the lookup table directly, it dynamically computes the output value through linear interpolation between two successive lookup table values. This effectively enlarges many times the DDS lookup table. Please refer to the respective hardware manual for details.

The settings here will be applied and saved if the OK button is pressed.

2.6.2.3 Calibration (Setting SubMenu) (ALT-S-C)

This dialog provides the following parameters/functions:

- Sound Card Input Calibration Factor
- Sound Card Output Calibration Factor
- Probe Calibration Factor
- Input DC Offset
- Sound Card Input Status
- 0dB Reference Vr
- Frequency Voltage Conversion Calibration Factor
- Latency for Synchronized Output / Input
- Sensor Sensitivity and Unit
- Load Factor for Power Calculation
During sound card calibration, Automatic Gain Control (AGC) (if any), Bass Boost (if any), Treble Adjustment (if any) and so forth must be disabled to ensure that no artificial modification on the input and output signal.

2.6.2.3.1 Sound Card Input Calibration Factor

You can calibrate the input channels of a sound card by giving the ADC full-scale voltage (1/2 peak-to-peak) value, i.e. the “Range” in the Calibration Setting dialog. The ADC full-scale voltage varies with the sound card internal gain, which is continuously adjustable via the Recording Control described previously. It is not practical to calibrate for every possible value of the gain. Instead, the software divides the full range of the gain into five segments (0~20%, 20% ~ 40%, 40% ~ 60%, 60% ~ 80%, 80% ~ 100%) in each category (Microphone with Boost, Microphone, Line In), with an assumption that the gain within each segment is linear. Therefore, at most, you only need to perform calibration at 20%, 40%, 60%, 80%, 100% of the full gain in each category and the ADC full-scale voltage at a particular gain value within a gain segment can be calculated via interpolation or extrapolation without further calibration. The calibration procedure is as follows:

Normal calibration procedure:

(1) Set the sound card internal gain to be calibrated by clicking the corresponding radio box. The software will adjust the gain to that percentage for one time after every such click. The current full-scale voltage value should not be touched.

(2) Input a sine wave (e.g. 1 kHz) with a known amplitude or RMS value to the input channel to be calibrated. Adjust the signal source (not the sound card internal gain) such that the Input Peak Level Indicator shows a value in the range of 80%~95%. This is to ensure sufficient calibration accuracy can be achieved. The signal source can be the calibrated Signal Generator of the software itself.

(3) In the Calculation pad, enter the amplitude/RMS value obtained from the Oscilloscope into the Read Value field, and enter the actual amplitude/RMS value of the signal into the Actual Value field. The actual value can be measured via other instrument such as a conventional multimeter or oscilloscope. Then, press the Calculate button. The corresponding full-scale voltage field (i.e. the Range field) will be filled automatically.

(4) Repeat (1)~(3) for other gain percentages.

For many sound cards, the gain is linear and Microphone with Boost provides exactly 20 dB’s gain over Microphone without Boost. Under this situation or assumption, you only need to calibrate for one gain value and let the software to take care of the rest. This simplifies the calibration procedure as follows:

Simplified calibration procedure for sound cards with linear gain and 20 dB’s Mic Boost:
(1) Set the sound card internal gain to be calibrated (i.e. 80%) by clicking the corresponding radio box. The software will adjust the gain to that percentage for one time after every such click. The current full-scale voltage value should not be touched.

(2) Input a sine wave (e.g. 1 kHz) with a known amplitude or RMS value to the input channel to be calibrated. Adjust the signal source (not the sound card internal gain) such that the Input Peak Level Indicator shows a value in the range of 80%~95%. This is to ensure sufficient calibration accuracy can be achieved. The signal source can be the calibrated Signal Generator of the software itself.

(3) In the Calculation pad, enter the amplitude/RMS value obtained from the Oscilloscope into the Read Value field, and enter the actual amplitude/RMS value of the signal into the Actual Value field. The actual value can be measured via other instrument such as a conventional multimeter or oscilloscope. Then, press the Calculate button. The corresponding full-scale voltage field will be filled automatically.

(4) In the Calculation pad, click “Fill All (MIC)” button if Microphone is being calibrated, or click “Fill All (Line In)” button if Line In is being calibrated. All the corresponding full-scale voltage fields (i.e. the Range fields) will be filled automatically.

If the software fails to detect the sound card’s input status or ASIO driver is used, then you only need to calibrate the full-scale voltage value for the Other/ASIO field, and bear in mind that any change of the sound card’s input gain after calibration may invalidate the calibration.

You can leave the input calibration factors at their factory default values if absolute magnitude measurement is not necessary.

2.6.2.3.2 Output Calibration Factor

You can calibrate the output channels of a sound card by assigning a DAC full-scale voltage (1/2 peak-to-peak) value for a certain volume setting defined by yourself. The volume setting is adjustable via the Volume Control described previously. Note that the calibration become invalid if the volume setting changes after calibration. The calibration procedure is as follows.

(1) Set the sound card volume to be calibrated via the Volume Control. The current full-scale voltage value should not be touched.

(2) Output a sine wave (e.g. 1 kHz) from the Signal Generator with an amplitude within 80%~100% of the full-scale voltage (un-calibrated). This is to ensure sufficient calibration accuracy can be achieved.

(3) In the Calculation pad, enter the above un-calibrated amplitude value into the Read Value field, and enter the actual amplitude value of the output signal into the Actual Value field. The actual value can be measured via other instrument such as
a conventional multimeter or oscilloscope. Then, press the Calculate button. The full-scale voltage field (i.e. the Range field) will be filled automatically. Note that normally a conventional multimeter only displays RMS value, you need to convert it into amplitude value via the formula: Amplitude = 1.414 × RMS value.

2.6.2.3.3 Probe Calibration Factor

Up to three attenuation factors for external probes or test leads can be defined.

For sound card based systems, you can make the probe by yourself using Section "Input and Output Connection for Sound Card Based System" described previously as reference. If you want to purchase the probe off-the-shelf, it is highly recommended to use the dedicated sound card oscilloscope probe supplied by Virtins Technology. Please refer to Virtins Technology's website for the specification and calibration procedure of the probe.

2.6.2.3.4 Input DC offset

The input DC offsets for Channel A and Channel B are displayed in two read-only edit boxes. They are expressed as a percentage of the ADC full-scale voltage (1/2 Vpp). Ideally, the input DC offsets should be zero. A positive value means that there exists a positive DC offset in that channel and it needs to be corrected by removing that offset from the raw data by the software. The input DC offset is measured using the “Zeroing” button in the Miscellaneous Toolbar. (refer to Section “Zeroing” described previously for details).

The display of this parameter is more for diagnostic purpose.

2.6.2.3.5 0dB Reference Vr

This parameter is used only when displaying dB, dB(A), dB(B), dB(C) in the Spectrum Analyzer and/or Multimeter. You can define your own 0dB reference or calibrate it to a certain standard such as sound pressure level.

Sound pressure is the pressure deviation from the local ambient pressure caused by a sound wave. Sound pressure can be measured using a microphone in air and a hydrophone in water. Sound Pressure Level (SPL) is a logarithmic measure of the RMS sound pressure of a sound relative to a reference value, that is:

\[
\text{SPL (dB)} = 20 \log_{10}(\frac{p_{\text{rms}}}{p_0})
\]

where \(p_0 \) is the reference sound pressure and \(p_{\text{rms}} \) is the RMS sound pressure being measured. The commonly used reference sound pressure in air is 20 µPa (rms). In underwater acoustics, the reference sound pressure is 1 µPa (rms). The “0dB Reference Vr” to be calibrated is the RMS voltage corresponds to the reference sound pressure. It must be calibrated together with the microphone/hydrophone to be used. The calibration procedure is as follows:
(1) Open the Multimeter and set its view type to be dB.

(2) Put a calibrated conventional sound level meter at the same place with the microphone. Note that the weighting profile used by this meter must be the same as the one used by the software. (For better calibration accuracy, a sound level calibrator should be used.)

(3) Generate a reference signal (e.g. 1 kHz sine wave). Adjust the volume such as the Input Peak Level Indicator shows a value in the range of 80%~95%. This is to ensure sufficient calibration accuracy can be achieved.

(4) In the Calculation pad, enter the sound pressure level obtained from the Multimeter (in dB) into the Read Value field, and enter the actual sound pressure level value obtained from the conventional sound pressure meter into the Actual Value field. Then, press Calculate button. The corresponding “0dB Reference Vr” field will be filled automatically.

The input channels must be calibrated first before performing sound pressure level calibration.

2.6.2.3.6 Frequency Voltage Conversion Factor

This parameter is used only when converting frequency back to voltage in the Multimeter. The software allows the assignment of the frequency range and its corresponding voltage range. The relationship between them is linear.

2.6.2.3.7 Latency for Synchronized Output/Input

This parameter is only applicable for the following two synchronized output / input operation modes, i.e. “Sync. No Loopback” and “Sync. iB = oA”, in the Signal Generator.

The latency is the time delay between the time when the Signal Generator is commanded to start and the time when signal output actually starts. The latency needs to be calibrated so that accurate synchronization can be achieved between the Signal Generator and the Oscilloscope.

The calibration procedure is as follows:

(1) Set the latency value to zero during calibration.

(2) Loop back the output Channel A to the input Channel A via a cable with proper attenuation if necessary.

(3) In the Signal Generator, select “Sync. iB = oA” mode, set "Start OSC after (s)" to zero, prepare to output 1 second’s 1 kHz sine wave.
(4) In the Oscilloscope, set “Trigger Mode” to “Single”, “Trigger Source” to “A”, “Trigger Edge” to “DF”, “Trigger Level” to “1%”, “Trigger Delay” to “0%”, “Sweep Time” to “10 ms”. These parameters together with the sound card internal gain should ensure that the Oscilloscope is correctly triggered at the very beginning of the signal.

(5) Stop the Oscilloscope if it is running.

(6) Start the Signal Generator.

(7) In the Oscilloscope, Channel A will display the captured signal which has gone through the hardware (sound card output channel, loop back cable, sound card input channel), and Channel B will display the signal generated by the Signal Generator which has not gone through any hardware. On the bottom left corner of the Oscilloscope window, the time stamp of the first data point in Channel A will be displayed with accuracy in millisecond. On its right hand side, the time difference between the Channel A and Channel B will be displayed in 1/1000 of a millisecond. This time difference is normally a negative value, which means the data in Channel B is earlier than the data in Channel A. Change the sign of this value and assign it to the Latency being calibrated. Repeat the above procedure for a few times to get the average value.

The following figure is an example of the above test.

2.6.2.3.8 Sound Card Input Status

Two statuses will be displayed here:
• Sound card input mixer status, including the input source as well as the gain percentage

• Sound card ADC full-scale voltage (Range) interpolated / extrapolated based on the sound card input calibration factors and the current sound card input mixer status

Note that if you change the sound card’s input mixer setting while the Calibration Setting dialog is opened, you can click the Refresh button provided to capture those changes.

2.6.2.3.9 Sensor Sensitivity and Unit

The unit of the Sensor Sensitivity is expressed as $[\text{ADC Engineering Unit}] / [\text{Sensor Engineering Unit}]$. The software supports two kinds of ADC Engineering Units, Voltage (V) and Ampere (A), depending on the ADC hardware used. The Sensor Engineering Unit can be configured according to the sensor used. The software provides ten pre-configured options for the Sensor Engineering Unit: V (Voltage), A (Ampere), g (for acceleration), m/s^2 (for acceleration), m/s (for velocity), m (for displacement), i/s (for velocity in English unit), i (for displacement in English unit), Pa (for pressure), C (for electric charge). You can also enter your own sensor unit directly into the Unit edit box.

The value of the Sensor Sensitivity can be entered directly into the Sensitivity edit box.

2.6.2.3.10 Load Factor for Power Calculation

There are a few power related Derived Data Points in the software (Please refer to the chapter for Data logger for details.). The power of the signal is calculated by:

$$\text{Power} = \text{RMS}^2 / \text{[Load Factor]}$$

For example, if you measure the voltage across a resistor, then you can get the power consumed by the resistor from the corresponding Derived Data Point by entering the resistor’s value into the load factor field in the dialog; If you measure the current through a resistor, then you can get the power consumed by the resistor from the corresponding Derived Data Point by entering the reciprocal of the resistor’s value into the load factor field.

2.6.2.3.11 Others

The functions of the buttons in the dialog are as follows:

• Default: All parameters will be filled with the default values.
• OK: Apply and save the changes and close the dialog.
• Cancel: Cancel the changes and close the dialog.
• Advanced: Access to advanced hardware specific calibration function. Please refer to the respective hardware manual for details.

2.6.2.4 Display (Setting SubMenu) (ALT-S-D)

![Display Setting window]

2.6.2.4.1 Display Colors

For all views, the following display parameters are configurable:

• Background Color
• Color of data curve for Channel A
- Color of data curve for Channel B
- Color of data curve for Channel EXT (digital input channel)
- Grid Color
- Other Text Color, such as the color for notes and horizontal axis label, etc.

Clicking on the color box will bring up a color selection window which allows you to select the color you want. Skin 1 ~ Skin 8 are preconfigured color schemes.

2.6.2.4.2 Miscellaneous

- Enable Record Length change via "Point" in Sampling Parameter Toolbar
 If this checkbox is ticked, it allows advanced user to change the Record Length directly. This is sometimes useful, e.g. when you want the Record Length to be an integer multiple of the FFT size.

 This checkbox is un-ticked by factory default.

- Run oscilloscope automatically after startup
 If ticked, the oscilloscope will run automatically with the default panel setting just after startup.

- Save Current Panel Setting on exit
 If ticked, the current panel setting will be saved automatically as the default panel setting when you exit the program.

- Lock Panel Setting after startup
 If ticked, the panel setting will be locked just after startup.

- Hide Sampling Parameter Toolbar
 If ticked, the Sampling Parameter Toolbar will be hidden.

- Hide Instrument & Miscellaneous Toolbar
 If ticked, the Instrument & Miscellaneous Toolbar will be hidden.

- Hide View Toolbars
 If ticked, all View Parameter Toolbars will be hidden.

- Hide Menubar
 If ticked, the menubar will be hidden. To access [Setting]>[Display] when the menu bar is hidden, press CTRL-BREAK.

- Auto Layout after Loading a Panel Setting File
 Three options are available:
 (1) Nil: No auto layout, i.e. retain the original layout specified in the PSF file. A PSF file can be saved with Nil, Tile Horizontally, Tile Vertically.
 (2) Tile Horizontally: Equivalent to [Window]>[Tile Horizontally]
 (3) Tile Vertically: Equivalent to [Window]>[Tile Vertically]

- ASIO Buffer Size
Selection of ASIO Buffer Size is enabled when ASIO driver is used and the ADC and DAC have not been started. Three options are available: Auto, Max, Min. Auto should be used normally. To achieve the fastest screen refresh rate, choose Min. If the signal output by the Signal Generator is not always continuous, Max should be forced.

2.6.2.4.3 Language

You can change the language of the software user interface to your preferred language. The software supports Multilingual User Interface under Windows 2000, XP, 2003, Vista, 7, 8 and above. Currently supported languages are English, French, German, Italian, Portuguese, Spanish, Russian, Simplified Chinese, Traditional Chinese, Japanese and Korean. It supports only the local language and English under Windows 95, 98, Me and Windows NT.

The language change will take effect after your restart the program.

2.6.2.4.4 Font Size

This parameter is used to adjust the font size of texts displayed in each view.

2.6.2.4.5 Refresh Delay

This parameter is used to adjust the delay time after the data analysis and display of the current frame of data is finished and before the software starts to acquire the next frame of data. To obtain the fastest screen refresh rate, set the Refresh Delay to 0%.

2.6.2.4.6 Roll Width

This parameter specifies the Roll Width under the Roll Mode. Depending on the ADC device used, it is expressed in either ms (millisecond) or pts (sampling points).

2.6.2.4.7 Frame Width & Duration

These two parameters specify the Frame Width and Duration under the Record Mode. Depending on the ADC device used, the Frame Width is expressed in either ms (millisecond) or pts (sampling points) while the Duration is expressed in ms (millisecond) only. Frame Width specifies the buffer size of streaming mode and Duration specifies the total time length of data to be recorded.

2.6.2.4.8 Number of Records per Log File

This parameter specifies the number of records in a Data Logger log file. (Refer to Section 6.2.4)

2.6.2.4.9 Line Width on Printer
Printers usually have a finer resolution than computer screens and thus the line width on printer should usually be thicker than that on screen in order to make a graph look similar on both devices. If the option here is ticked, you can assign a fixed line width for all graphs plotted on printer. Otherwise, the line width on printer will be automatically determined by:

\[\text{[Line Width on Printer]} = \text{[Line Width on Screen]} \times \text{[Printer Horizontal Resolution]} / \text{[Graph Window Width]} \]

The Line Width on Screen will be introduced later.

2.6.2.4.10 Others

- Default: All parameters will be filled with the default values.
- OK: Apply and save the changes and close the dialog.
- Cancel: Cancel the changes and close the dialog.

2.6.2.5 Note (Setting SubMenu) (ALT-S-N)

You can write down some notes for a measurement. The notes will be displayed if you tick the "Display" checkbox. The notes will persist in the WAV file if saved.

2.6.2.6 ADC Device Database (Setting SubMenu) (ALT-S-B)
Multi-Instrument is able to interface to many ADC and DAC devices including sound cards based on the standard data acquisition software interface specification developed by Virtins Technology (vtDAQ© for ADC and vtDAO© for DAC). For each category of devices, an intermediate interface DLL (dynamic link library) needs to be developed according to this standard interface specification to bridge Multi-Instrument and the device’s original driver or software interface. The software can work with any device as long as the corresponding intermediate interface DLL is provided. One interface DLL should contain either the ADC functions or DAC functions, but not both if possible, even if all of these functions are supported by one single device. This is to ensure that the ADC and DAC device can be selected independently in Multi-Instrument. For example, you can run a DSO (Digital Storage Oscilloscope) hardware for ADC and the sound card for DAC simultaneously.

For details of the vtDAQ and vtDAO interface specifications, please refer to: vtDAQ and vtDAO Interfaces

The ADC Device database contains a list of the supported ADC device models as well as their specifications. You can add or remove the supported device models and modify their specifications using this database configuration dialog.

2.6.2.6.1 Device Category

The ADC interface DLLs for the following categories of devices are provided in the software package:

- Sound Cards with MME driver
 All Windows compatible sound cards fall into this category.

- Sound Cards with ASIO driver
 More and more sound cards, especially those used in the Pro-Audio field, support ASIO (Audio Stream Input / Output) driver in addition to MME driver. Some
sound cards may have different functions / performance with their ASIO drivers than with their MME drivers. MME driver and ASIO driver are exclusive with each other, and you can use only one of them at any time for a particular sound card. Unlike other device categories, a single interface DLL is provided for both the ADC and DAC functions for the ASIO driver due to the fact that the ADC and DAC must work synchronously within the ASIO driver. This implies that in Multi- Instrument, if you use the ASIO driver for ADC, you must NOT use the MME driver for DAC for the same sound card, and vice versa. If you want to use ASIO drivers for both the ADC and DAC, then you must ensure that the same ASIO driver for the same sound card is chosen.

- NI DAQmx cards
 Many data acquisition cards from National Instruments fall into this category.

- VT DSO H1
 Type H1 DSO cards from Virtins Technology. Please refer to the hardware manual provided separately.

- VT DSO F1
 Type F1 DSO cards from Virtins Technology. Please refer to the hardware manual provided separately.

- VT DSO H2
 Type H2 DSO cards from Virtins Technology. Please refer to the hardware manual provided separately.

- VT DSO H3
 Type H3 DSO cards from Virtins Technology. Please refer to the hardware manual provided separately.

- VT DAQ 1
 Type 1 DAQ cards from Virtins Technology. Please refer to the hardware manual provided separately.

- VT RTA 1
 Type 1 RTA cards from Virtins Technology. Please refer to the hardware manual provided separately.

- My DAQ Device
 User definable DAQ device. If you want to allow Multi-Instrument to interface to your own DAQ device, then you can develop your own MyDAQ.dll according to vtDAQ interface specifications. Please refer to vtDAQ and vtDAO Interfaces provided separately.

2.6.2.6.2 Device Model

Each device category may contain one or more device models with possibly different hardware specifications:
- **Device Model**
 You can specify a Device Model name.

- **Number of Channels**
 It can be either one or two.

- **Trigger Type**
 Three types of trigger are supported:
 - **Hardware Trigger**
 You can further specify:
 - whether the Trigger Level is adjustable
 - whether Pre-Trigger is supported
 - whether ALT-Trigger is supported
 - **Software Trigger**
 Software Trigger is possible for those ADC devices that support continuous streaming, such as sound cards.
 - **External Trigger**
 You can further specify whether the External Trigger Level is adjustable and its range.

- **Sampling Frequency**
 You can add up to 32 sampling frequencies for each device model. You can further specify whether the maximum sampling frequency entered should be shared among the channels used (i.e. Multiplexed).

- **Sampling Bit Resolution**
 You can add up to 32 sampling bit resolutions for each device model. Note that the sampling bit resolution here refers to the original sampling bit resolution of the ADC device. It will be converted to 8, 16, 24, 32 bit by the interface DLL and thus only 8, 16, 24, 32 bit will be available for selection in the Sampling Parameter Toolbar.

- **Range**
 You can add up to 32 ADC ranges for each device model. Two types of ADC devices are supported: Analog Voltage to Digital Conversion, Analog Current to Digital Conversion, with respective engineering units V (Voltage) and A (Ampere). The ADC range must be symmetric with regards to zero, i.e. it must be ±xxx.

- **Terminal Type**
 Five options are available: Default, Referenced Single End, Non Referenced Single End, Differential, Pseudo Differential. You can choose more than one of them for each device model.

- **Coupling Type**
 Three options are available: AC, DC, GND. You can choose more than one of them for each device model. If the coupling type of each channel can be changed independently, then you should tick the Per Channel checkbox.
2.6.2.6.3 Auto Detect & Fill

Some ADC devices can provide their hardware specification information through software interface when they are connected to the computer. The Auto Detect & Fill button is used to attempt to acquire the hardware information and fill the above hardware specification fields as many as possible when the device is connected to the computer. You still need to fill those blank fields (if any) manually and amend the auto-filled fields manually if necessary.

The Device No. combo box allows you to choose one device from a list of devices in the device category present in the system.

Once you select a device category in the Device Category combo box, the rest of parameters will be updated accordingly as if the Auto Detect & Fill button has been pressed once.

2.6.2.6.4 Others

- Add: Add a new device model with the set specifications into the ADC device database.
- Delete: Delete a selected device model from the ADC device database. Note that the device models labeled “Sound Card MME” and “Sound Card ASIO” are not allowed to be deleted.
- OK: Save the changes to the ADC device database and close the dialog.
- Cancel: Cancel the changes to the ADC device database and close the dialog.

2.6.2.7 DAC Device Database (Setting SubMenu) (ALT-S-T)
The DAC Device database contains a list of the supported DAC device models as well as their specifications. You can add or remove the supported device models and modify their specifications using this database configuration dialog.

2.6.2.7.1 Device Category

The DAC interface DLLs for the following categories of devices are provided in the software package:

- **Sound Cards with MME driver**
 All Windows compatible sound cards fall into this category.

- **Sound Cards with ASIO driver**
 More and more sound cards, especially those used in the Pro-Audio field, support ASIO (Audio Stream Input / Output) driver in addition to MME driver. Some sound cards may have different functions / performance with their ASIO drivers than with their MME drivers. MME driver and ASIO driver are exclusive with each other, and you can use only one of them at any time for a particular sound card. Unlike other device categories, a single interface DLL is provided for both the ADC and DAC functions for the ASIO driver due to the fact that the ADC and DAC must work synchronously within the ASIO driver. This implies that in Multi-Instrument, if you use the ASIO driver for ADC, you must NOT use the MME driver for DAC for the same sound card, and vice versa. If you want to use ASIO drivers for both the ADC and DAC, then you must ensure that the same ASIO driver for the same sound card is chosen.

- **NI DAQmx cards**
 Many data acquisition cards from National Instruments fall into this category.

- **VT DAO 1**
 Type 1 DAO cards from Virtins Technology. Please refer to the hardware manual provided separately.

- **My DAO Device**
User definable DAO device. If you want to allow Multi-Instrument to interface to your own DAO device, then you can develop your own MyDAO.dll according to vtDAO interface specifications. Please refer to vtDAQ and vtDAO Interfaces provided separately.

2.6.2.7.2 Device Model

Each device category may contain one or more device models with possibly different hardware specifications:

- **Device Model**
 You can specify a Device Model name.

- **Number of Channels**
 It can be either one or two.

- **Clock Type**
 Two clock types are supported:
 - **Hardware Clock**
 The sampling frequency is controlled by the hardware.
 - **Software Timed**
 The sampling frequency is controlled by the software.

- **Sampling Frequency**
 You can add up to 32 sampling frequencies for each device model.

- **Sampling Bit Resolution**
 You can add up to 32 sampling bit resolutions for each device model. Note that the sampling bit resolution here refers to the original sampling bit resolution of the DAC device. It will be converted to 8, 16, 24, 32 bit by the interface DLL and thus only 8, 16, 24, 32 bit will be available for selection in the Signal Generator.

- **Range**
 You can add up to 32 DAC ranges for each device model. Two types of DAC devices are supported: Digital to Analog Voltage Conversion, Digital to Analog Current Conversion, with respective engineering units V (Voltage) and A (Ampere). The DAC range can be either symmetric with regards to zero, i.e. ± xxx, or in the range from 0 to a positive value, i.e. xxx. You should tick the ± checkbox for the former case.

- **Buffer Size**
 You can specify the buffer size per channel for each device model. The unit of this parameter is Bytes/Channel. If the device supports continuous streaming, then the number of continuous raw data points the DAC device can provide is not limited by the physical buffer size of the device, and you should set the Buffer Size to the maximum value of 4294967295.

Note that the above specifications must be filled according to the DAC device’s hardware specifications.
2.6.2.7.3 Auto Detect & Fill

Some DAC devices can provide their hardware specification information through software interface when they are connected to the computer. The Auto Detect & Fill button is used to attempt to acquire the hardware information and fill the above hardware specification fields as many as possible when the device is connected to the computer. You still need to fill those blank fields (if any) manually and amend the auto-filled fields manually if necessary.

The Device No. combo box allows you to choose one device from a list of devices in the same device category present in the system.

Once you select a device category in the Device Category combo box, the rest of parameters will be updated accordingly as if the Auto Detect & Fill button has been pressed once.

2.6.2.7.4 Others

- Add: Add a new device model with the set specifications into the DAC device database.
- Delete: Delete a selected device model from the DAC device database. Note that the device models labeled “Sound Card MME” and “Sound Card ASIO” are not allowed to be deleted.
- OK: Save the changes to the DAC device database and close the dialog.
- Cancel: Cancel the changes to the DAC device database and close the dialog.

2.6.2.8 Oscilloscope Processing (Setting SubMenu) (ALT-S-G)
A signal is acquired by the Oscilloscope frame by frame. The sweep time of the Oscilloscope is sometimes called Frame Width or Record Length. A data frame contains multiple samples. These samples are continuous within a data frame. But there may be discontinuity between two adjacent data frames, depending on the sampling mode (e.g. Frame mode, Record mode, Roll mode). The acquired signal will undergo the following processes in time domain sequentially:

1. Inter-frame processing: None, Linear or Exponential Average.
2. Time Delay Removal.
3. Demodulation: Nil, AM, FM or PM.
4. Intra-frame processing: Remove DC, Rectification (or Detection) and then Digital Filtering.

Then the processed signal is passed to the spectrum analyzer for further processing and analysis in frequency domain.

“Persist” must be chosen if you want to persist the above operations on the raw data. Affected commands are: File Save, File Save as, Oscilloscope Export, File Extract, Play, Cyclic Play.

2.6.2.8.1 Digital filtering
Digital filtering belongs to intra-frame processing and is performed after the inter-frame processing and demodulation.

Six options are available: None, Low Pass, High Pass, Band Pass, Band Stop, Arbitrary. The class of filter can be selected from FFT, FIR and IIR. These options are performed after “Remove DC” and Rectification.

A Finite Impulse Response (FIR) filter, as the name suggested, has a finite impulse response. It has no feedback and therefore is always stable. It is usually designed to have symmetrical filter coefficients in order to achieve a linear phase response. It should be noted that this filter will cause the signal to delay \([\text{FIR order}}/2/\text{[Sampling Rate]}\) seconds.

An Infinite Impulse Response (IIR) filter has an impulse response function which is non-zero over an infinite length of time. It uses feedbacks from the output to the input and thus may lead to instability. It does not have a linear phase response usually.

Unlike FIR and IIR filters, the filtering of a FFT filter is not done in time domain. Instead, the input signal is transformed from time domain to frequency domain using FFT, its spectrum is then multiplied with the filter’s frequency response and the result is transformed back to time domain using inverse FFT.

The software will force itself to use the FIR filter when the record length of data is greater than the maximum allowable FFT size (i.e. 4194304), even if a FFT filter is specified.

On the other hand, the software will force itself to use the FFT filter when the record length of data is less than 10 times of the FIR filter order, even if a FIR filter is specified.

The software has a built-in FIR filter designer based on Window or Fourier Transform method. The filter order must be even and in the range of 2~1022. Different window functions can be used to fulfill different requirements for stopband attenuation and transition bandwidth. The filter order determines the width of the transition band, the higher the order, the narrower the transition between the passband and stopband, and the slower the processing speed.

The software also supports the import of IIR or FIR filter coefficients designed externally.

Digital filter can be applied to Channel A, Channel B, or both of them.

2.6.2.8.1.1 None

No filtering will be performed.

2.6.2.8.1.2 Low Pass
A low pass filter is a filter that passes low frequencies and rejects (attenuates the amplitude of) frequencies higher than the cutoff frequency. Two classes of low pass filters are supported: FFT and FIR.

When a Low Pass filter is applied to a channel, the symbol \mathcal{L} will be displayed beside the corresponding axis label in the Oscilloscope view.

2.6.2.8.1.3 High Pass

A high pass filter is a filter that passes high frequencies and rejects (attenuates the amplitude of) frequencies lower than the cutoff frequency. Two classes of high pass filters are supported: FFT and FIR.

When a High Pass filter is applied to a channel, the symbol \mathcal{H} will be displayed beside the corresponding axis label in the Oscilloscope view.

2.6.2.8.1.4 Band Pass

A band pass filter is a filter that passes frequencies within a certain range and rejects (attenuates the amplitude of) frequencies outside that range. Two classes of band pass filters are supported: FFT and FIR.

When a Band Pass filter is applied to a channel, the symbol \mathcal{B} will be displayed beside the corresponding axis label in the Oscilloscope view.

2.6.2.8.1.5 Band Stop

A band stop filter is a filter that rejects (attenuates the amplitude of) frequencies in a certain range and passes the rest of frequencies. Two classes of band stop filters are supported: FFT and FIR.

When a Band Stop filter is applied to a channel, the symbol \mathcal{S} will be displayed beside the corresponding axis label in the Oscilloscope view.

2.6.2.8.1.6 Arbitrary

An arbitrary filter is a filter that has an arbitrary frequency response. There are two ways to define an arbitrary filter. One is to define its frequency response (magnitude). The other is to define its filter coefficients.

- Use Frequency Response File (*.frf) to define an arbitrary filter

A Frequency Response File is a Comma Separated Variable (CSV) TXT file that defines the magnitude frequency response of the filter. It has the following format:
Example:

1,0,0
2,1000,0
3,1000,1,-1000
4,100000,-1000
......

Each line contains three comma separated variables. The first variable is the sequential number. The second one is the frequency value in Hz. And the third one is the corresponding gain value in dB. Note that 0 dB represents the unit gain. Any frequencies that fall outside the defined range will be given a gain of –1000 dB. The example shown above is a low pass filter with a cutoff frequency of 1000 Hz.

Some sample files are provided in the FRF directory of the software and can be used as templates.

- Use IIR Coefficient File (*.iir) to define an arbitrary filter

An IIR filter is defined as:

\[y[n]=b_0x[n]+b_1x[n-1]+...+b_Mx[n-M]-a_1y[n-1]-a_2y[n-2]-...-a_Ny[n-N]; \]

where:
\(x[n] \) is the input signal,
\(y[n] \) is the output signal,
\(b_i \) is the so-called feedforward filter coefficients,
\(a_i \) is the so-called feedback filter coefficients,
\(M \) is the feedforward filter order,
\(N \) is the feedback filter order.

An IIR Coefficient File is a Comma Separated Variable (CSV) TXT file that contains the coefficients of the IIR filter. It has the following format (assuming \(M>N \)):

Example:

0, b_0, a_0
1, b_1, a_1
2, b_2, a_2
......
N, b_N, a_N
......
M-1, b_{M-1}, 0
M, b_M, 0

where \(a_0 \) (usually assigned a value of “1”) is just a placeholder and will always be ignored by the software. For IIR filters, usually \(M \) and \(N \) are designed to be equal. In the cases that they are not equal, zeros must be used to
fill up the gaps. The maximum order supported is 1022. If $N = 0$, then the filter becomes a FIR filter.

It should be noted that the software is built with a limiter which will prevent the output of any digital filter from going outside of the range defined by the input ADC full-scale voltage.

Some sample files are provided in the IIR directory of the software and can be used as templates.

When an Arbitrary filter is applied to a channel, the symbol $\frac{2}{2}$ will be displayed beside the corresponding axis label in the Oscilloscope view.

The button in this dialog can be used to open the selected Frequency Response File or the IIR Coefficient File for viewing and editing via Microsoft Notepad.

2.6.2.8.1.7 Remove DC

“Remove DC” is performed before rectification (detection) and any digital filtering. When this option is applied to a channel, the symbol \rightarrow will be displayed beside the corresponding axis label in the Oscilloscope view.

2.6.2.8.1.8 Rectification (Detection)

Rectification (Detection) is performed right after “Remove DC” and before any digital filtering. Three options are available: Nil, Half Wave, and Full Wave. When rectification is applied to a channel, the symbol \rightarrow (Half Wave) or \Rightarrow (Full Wave) will be displayed beside the corresponding axis label in the Oscilloscope view.

The following figure shows a sine wave before and after half-wave rectification.

The following figure shows a sine wave before and after full-wave rectification.
2.6.2.8.2 Inter-frame Processing

Inter-frame processing in time domain is performed before demodulation and intra-frame processing. There are three options: None, Linear Average and Exponential Average. Averaging is useful for removing noises from a repetitive signal. Inter-frame Averaging in time domain must be synchronized in order to obtain meaningful results. Synchronization can be achieved through proper triggering during data acquisition.

2.6.2.8.2.1 Linear Average

If Linear Average is selected, the Oscilloscope will keep track of each data frame acquired and only display the averaged waveform of the specified number of data frames acquired most recently. The number of frames averaged will be displayed at the bottom-left corner of the Oscilloscope view.

You can specify the number of contiguous frames to be processed. The available options are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 and forever. You can also enter any number between 1 and 200 manually. When “Forever” is selected, you can reset the process using the Reset button when necessary.

2.6.2.8.2.2 Exponential Average

Unlike Linear Average where all data frames used for average are given equal weights, in Exponential Average, the weighting factor for each data frame decreases with time exponentially, giving much more importance to recent observations while still not discarding older observations entirely. The degree of weighting decrease is expressed as a constant α in percentage. The greater the α, the faster the decrease. Alternatively, α may be expressed in terms of N, where $\alpha = 2/(N+1)$, and $N \times [\text{time interval between the start times of two adjacent data frames}]$ is called the time constant.

2.6.2.8.3 Demodulation
Demodulation is performed after inter-frame processing and before intra-frame processing. It is actually processed within a frame and thus there may be some “boundary effect” at the two ends of the frame. There are four demodulation options: None, AM, FM and PM. Before demodulation is performed, it is possible to let the signal to pass through a bandpass filter first before demodulation. This simulates the frequency tuning process in a radio system and is sometime important in order to achieve better demodulation quality. The lower and upper frequency limits of the band pass filter can be specified. The AM, FM, PM demodulation methods used here are based on Hilbert Transform. Demodulation can be applied to Channel A, Channel B, or both of them.

2.6.2.8.3.1 AM Demodulation

In Amplitude Modulation (AM), the amplitude of the carrier signal varies in proportion to the instantaneous amplitude of the modulating signal. An AM signal is demodulated here by detecting its envelope. The following is an example of an AM signal (in blue) and its demodulated signal or envelop (in red). The carrier frequency is 10 kHz and modulating frequency is 1 kHz. The modulation index is 50%.

“Remove DC” or a high pass filter described in the previous sections can be used to remove the DC component in the demodulated signal in the above figure. When AM demodulation is applied to a channel, the symbol “AM” will be displayed beside the corresponding axis label in the Oscilloscope view.

Demodulation of an AM signal can also be done through rectification followed by low pass filtering which have been described in the previous sections.

2.6.2.8.3.2 FM Demodulation

In Frequency Modulation (FM), the instantaneous frequency deviation from the carrier frequency of the modulated signal varies in proportion to the instantaneous amplitude of the modulating signal. A FM signal is demodulated here by calculating
the instantaneous frequency deviation through Hilbert Transform. The instantaneous frequency deviation is then converted to the instantaneous amplitude of the modulating signal using the frequency modulation sensitivity which has a unit of Hz/EU, where EU is the sensor’s unit which is usually Volt. For FM demodulation, two parameters need to be manually entered by the users: the carrier frequency and the frequency modulation sensitivity. When FM demodulation is applied to a channel, the symbol “FM” will be displayed beside the corresponding axis label in the Oscilloscope view.

The following is an example of a FM signal (in blue) and its demodulated signal (in red). The FM signal has a carrier frequency of 10 kHz, a modulating frequency of 1 kHz, a maximum frequency deviation of 5 kHz, and a frequency modulation sensitivity of 10 kHz/V. Thus the amplitude of the demodulated signal is ±0.5V. “Remove DC” is used to remove the DC residual in the demodulated signal in the figure below.

Multi-Instrument features unique FM demodulation algorithm which is able to demodulate the FM signal accurately even when the sampling rate is not very high compared with the FM signal spectrum.

2.6.2.8.3.3 PM Demodulation

In Phase Modulation (PM), the instantaneous phase deviation from the carrier phase (i.e. the phase if no modulation on the carrier signal is applied) of the modulated signal varies in proportion to the instantaneous amplitude of the modulating signal. A PM signal is demodulated here by calculating the instantaneous phase deviation through Hilbert Transform. The instantaneous phase deviation is then converted to the instantaneous amplitude of the modulating signal through the phase modulation sensitivity which has a unit of °/EU, where EU is the sensor’s unit which is usually Volt. For PM demodulation, two parameters need to be manually entered by the users: the carrier frequency and the phase modulation sensitivity. When PM demodulation is
applied to a channel, the symbol “PM” will be displayed beside the corresponding axis label in the Oscilloscope view.

The following is an example of a PM signal (in blue) and its demodulated signal (in red). The PM signal has a carrier frequency of 10 kHz, a modulating frequency of 1 kHz, a maximum phase deviation of 90°, and a phase modulation sensitivity of 180°/V. Thus the amplitude of the demodulated signal is ±0.5V. “Remove DC” is used to remove the DC residual in the demodulated signal in the figure below.

2.6.2.8.4 Time Delay Removal

Some measurements require the acquired signals in the two input channels to be time aligned. This is usually not an issue if the signals travel within electric circuits without any intentional digital delay, due to the lightning fast travelling speed of electric signal in circuits. Time Delay Removal may be required for those systems that contain transducers which convert electric signals to other forms of energy (e.g. sound) or vice versa. These systems usually involve a signal travelling path in which the signal travelling time cannot be neglected in the measurements where time alignment between the two input channels is required. This is the case for acoustic transfer function measurement using dual-channel FFT (see figure below). In this measurement, the signal output by the signal generator will go through two different paths: one is connected directly to the input Channel B, the other involves an acoustic path from the speaker to the microphone and goes into the input Channel A. As the sound travels much slower than the electric signal, the signal received in Channel A will be delayed considerably compared with that in Channel B. Thus, it is normally required to remove this delay in acoustic transfer function measurement as well as Coherence / Non-Coherence function measurement.
To remove the time delay in Channel A, tick the Time Delay Removal option and enter the time delay value (in ms) in Channel A with respect to Channel B. A positive value means that the signal in Channel A is delayed and vice versa. If the time delay is positive, after the time delay removal, the data in Channel A will be shifted left by the time delay value so as to be time aligned with the data in Channel B. The right most part of the data in Channels A & B with a length equal to the time delay will be reset to zero. On the other hand, if the time delay is negative, after the time delay removal, the data in Channel B will be shifted left by the time delay value so as to be time aligned with the data in Channel A. Again, the right most part of the data in Channels A & B with a length equal to the time delay will be reset to zero. Keep this in mind when configuring your own signal processing algorithm in the software.

In case the time delay between the two input channels is not readily available through calculation, it can be measured using quite a few methods. Cross-correlation using white noise, MLS or pink noise as stimulus is recommended. Cross-correlation function will be introduced later.

The following two figures show the time delay measured using cross-correlation with white noise before and after the time delay removal, respectively. It should be noted that in the cross-correlation measurement, a negative time delay value means that the signal in Channel A is delayed and vice versa. In this example, -2.979 ms is measured in the cross correlation and thus 2.979 ms should be entered in the Time Delay Removal edit box here. After this time delay removal, the cross correlation measures a time delay of 0 ms meaning that the data in both channels are perfectly time aligned.
2.6.2.9 Oscilloscope Y Scale (Setting SubMenu) (ALT-S-Y)

The options for Y Scale allows the waveform conversion among acceleration, velocity and displacement, when the raw data are acquired from acceleration (engineering units: g or m/s^2), velocity (engineering unit: m/s or i/s) or displacement (engineering
unit: m or i) sensors. The statistical parameters of them are summarized in the vibrometer function of the Multimeter. The Oscilloscope in the following figure shows the velocity waveform obtained by integrating the raw acceleration data over time. A high pass filter with a very low cut-off frequency (configurable) is used to remove the errors accumulated during the integration process. The high pass filter may cause some unwanted “boundary effect” at one or both ends of the data. These data are disregarded by the vibrometer and marked with a cross.

Both SI and English unit systems are supported. The software will automatically choose the unit system according to the sensor sensitivity units entered via [Setting]>[Calibration]->_Sensor Unit”. Manual switching between the two unit systems is only allowed when acceleration sensors are used.

2.6.2.10 Oscilloscope Chart Options (Setting SubMenu) (ALT-S-O)
2.6.2.10.1 Chart Type

Five chart types are supported: Line, Scatter, Column, Bar and Step. This function can also be accessed by double clicking in the area on the top of the plot region.

2.6.2.10.2 Line Width

Line width can be adjusted from 1 to 10. The default value is 1.

2.6.2.10.3 Display Mode

There are two ways to display a frame of data:

- Display all data points
 In this mode, all data points will be plotted. When the total number of data points to be plotted is greater than the total number of the horizontal pixels of the plot region, multiple points may be plotted per vertical raster line. For example, if the total number of data points to be plotted is 10000 and the horizontal length of the plot region is 1000 pixels, then 10 points will be plotted per vertical raster line on average.
The advantage of this display mode is that you are able to see all peaks in the data. However, the screen refresh becomes slow and the data curve becomes clustered when the total number of data points is large.

The following figure illustrates a ten-second sound record with a sampling frequency of 44100 Hz under this display mode.

- Display one data point per vertical raster line
 In this mode, one data point is plotted per vertical raster line. The vertical value of the data point is interpolated from the collected raw data. The advantage of this display mode is that the screen refreshes very fast even if the total number of data points to be plotted is very large. The disadvantage is that it might miss out some characteristics of the data such as peak values.

 The following figure illustrates the same sound record as the above one under this display mode.
It should also be noted that Lissajous Pattern View will always display all collected data points irrespective of the display mode setting.

The software has a display mode automatic switching feature. In "Display one data point per vertical raster line" mode, the software will force the display to "Display all data points" mode when the total number of data points in time domain is less than 2 times of the horizontal length of the plot region in the Oscilloscope. In the Spectrum Analyzer, the software will force the display to "Display all data points" mode when the total number of data points in frequency domain is less than 4 times of the horizontal length of the plot region. The threshold value in the Spectrum Analyzer is higher because the signal in frequency domain tends to change more abruptly (thus more likely to miss out the peak value) than that in time domain. Note that the horizontal length of the plot region is increased by multiple times with the corresponding multiplier. Therefore, you are always able to see all data points if you zoom in sufficiently irrespective of the display mode you set.

Due to the above display mode automatic switching feature, it is recommended that the "Display one data point per vertical raster line" mode be used as the normal setting. You can switch to "Display all data points" mode manually when necessary.

By factory default, the Oscilloscope and Spectrum 3D Plot are set in “Display one data point per vertical raster line” mode and the Spectrum Analyzer is set in “Display all data points” mode.
2.6.2.10.4 Persistence
Under persistence mode, up to 200 most recent waveforms are kept in the computer memory. These waveforms can be superimposed/drawn in the oscilloscope view in three ways as follows. Note that Persistence Mode affects the graphic rendering of these waveforms in the oscilloscope view only and does not affect any other aspects such as RMS values, spectrum analysis, data storing, etc..

(1) Phosphorescent
Most recent waveform is drawn in the selected color for that channel, the least recent waveform is drawn in the background color, and the rest of waveforms are drawn in colors interpolated between the two according to their ages. This emulates the phosphor display of a conventional analog oscilloscope whereby the trace decays over time.

(2) Rainbow
Waveforms are drawn in colors derived from a predefined Rainbow color palette according to their ages. Unlike the Phosphorescent mode, the trace does not decay over time.
(3) Equivalent Time Sampling (ETS)
While a spectrum analyzer can analyze a signal correctly as long as the sampling frequency is at least twice the highest frequency contained in the signal (Nyquist Sampling Theorem), an oscilloscope, under linear interpolation mode (refer to the next section), normally requires the sampling frequency to be at least 10 times of the signal frequency in order to acquire sufficient samples in one cycle to draw the waveform in reasonably good shape. ETS can be used to greatly increase the number of samples per cycle by accumulating samples over many cycles. It is most useful when the number of samples per cycle acquired using real-time sampling is inadequate. One prerequisite to use ETS is that the signal under test must be repetitive. The following two figures show a comparison between real time sampling and ETS. The first one samples a 12MHz sine wave with a 50MHz clock in real time sampling mode while the second one samples the same signal with a 50MHz clock in ETS.
2.6.2.10.5 Interpolation Mode

Interpolation is used when two adjacent samples span more than three pixels in horizontal direction on the screen. That is, there is at least one pixel in between the two samples horizontally. Interpolation mode determines the way to connect two adjacent samples on the screen when plotting a waveform. It affects the rendering of a waveform on the screen only and does not affect any other aspects such as RMS values, spectrum analysis, data storing, etc. Two methods are available: Linear Interpolation and SINC Interpolation.

(1) Linear Interpolation
Linear interpolation is the most straightforward method. It connects two adjacent samples using a straight line on the screen. When the sampling frequency is at least 5~10 times of the signal frequency, linear interpolation can gives reasonably good waveforms. When the ratio of the sampling frequency to the signal frequency is less than 5~10 (but still higher than 2 as dictated by Nyquist Sampling Theorem, i.e. the spectral analysis results are still absolutely correct), the waveform plotted using linear interpolation can be severely distorted. The following example samples a 20MHz sine wave with a 50MHz clock in real time and then renders the waveform using linear interpolation. The sampling-frequency-to-signal-frequency ratio is 2.5. The waveform in the oscilloscope looks very distorted.
SINC Interpolation
Nyquist-Shannon Sampling Theorem states that an analog signal that has been sampled can be perfectly reconstructed from the samples if the sampling frequency is greater than twice of the highest frequency in the original signal. If we know that the signal is band-limited within the Nyquist frequency (1/2 of the sampling frequency), then we can use SINC interpolation to reconstruct the original signal waveform on the screen. A sampling-frequency-to-signal-frequency ratio greater than 2.5 would give nearly perfect results while a ratio in the range of 2.1~2.5 would still give reasonably good results. Many DAQ devices such as VT DSOs and sound cards are equipped with anti-aliasing filters and satisfy the requirements of Nyquist-Shannon Sampling Theorem, SINC interpolation is thus preferred as it produces much better curve fitting results than linear interpolation. SINC interpolation is selected by default in the software.

If you want to display signals such as square waves, which ideally contain frequencies higher than the Nyquist frequency, then de-selecting it to enable linear interpolation will give the square waveforms a better look. When SINC interpolation is applied, “SINC” will be displayed at the bottom middle of the Oscilloscope window.

The following example samples a 20MHz sine wave with a 50MHz clock in real time and then renders the waveform using SINC interpolation. The sampling-frequency-to-signal-frequency ratio is 2.5. The waveform in the oscilloscope looks nearly perfect.
2.6.2.11 Oscilloscope Reference (Setting SubMenu) (ALT-S-R)
Reference curves are very useful for data comparison. The software allows you to configure up to 5 reference curves for Channel A and up to 5 reference curves for Channel B. Reference curves can be configured by copying the currently displayed data curve from Channel A, Channel B or loading a reference curve file from the hard disk.

Each line in the above figure consists of the parameters/controls for one reference curve. From left to right, they are:

- **Display/Hide Checkbox**
 It is used to display/hide the respective reference curve. If the reference curve has not been saved to the hard disk, hiding it will clear it from the computer memory.

- **Color Selection Box**
 Clicking on it will bring up a color selection window which allows you to select the color you want for that reference curve.

- **Legend**
 The software will automatically assign a textual label for the reference curve, such as “RefA0”, “RefB0”. You can overwrite it with your own preference.

- **File Name**
If the reference curve is configured by copying the currently displayed data curve from Channel A or Channel B and it has not yet been saved to the hard disk. Then it will be named as “Memory A0”, “Memory B0”…..

If the reference curve is loaded from the hard disk, then the file name will be reflected here.

- **File Open**
 Use this command to load a reference file from the hard disk.

- **Copy from Channel A**
 Configure the reference curve by copying the currently displayed data curve from Channel A.

- **Copy from Channel B**
 Configure the reference curve by copying the currently displayed data curve from Channel B.

- **File Save**
 Use this command to save the reference curve data from the computer memory to the hard disk.

- **File Edit**
 Use this command to edit an existing reference file or create a new reference file.

- **High-High Limit, High Limit, Low Limit, Low-Low Limit, Similarity**
 If ticked, the reference curves are assigned as the respective limits for the real-time waveform. Whether the waveform breaks these limits and how much is exceeded can be checked through the respective DDPs:

 WaveformComparisonH_A:
 - 0: waveform in Ch. A is normal.
 - <0: waveform in Ch. A exceeds the High Limit only. The absolute value indicates how much is exceeded.
 - >0: waveform in Ch. A exceeds the High-High Limit. The absolute value indicates how much is exceeded.

 WaveformComparisonL_A:
 - 0: waveform in Ch. A is normal.
 - >0: waveform in Ch. A falls below the Low Limit only. The absolute value indicates how much is exceeded.
 - <0: waveform in Ch. A falls below the Low-Low Limit. The absolute value indicates how much is exceeded.

 Similarly, **WaveformComparisonH_B** and **WaveformComparisonL_B** are used for Ch. B. “Similarity” function and its respective DDPs: **WaveformSimilarity_A** and **WaveformSimilarity_B** are reserved for future development.
The reference file (*.ref) is a Comma Separated Variable (CSV) TXT file with the following format:

Example:

1, 0.000108441, 0.103241
2, 0.000131117, 0.0823364
…….

Each row contains the coordinates of a point of the reference curve with three variables: sequential number, X value, and Y value. Minimum two points must be specified per reference curve.

Some sample files are provided in the REF directory of the software and can be used as templates.

2.6.2.12 Save Current Panel Setting as Default (Setting SubMenu) (ALT-S-F)

When you start the software at the very first time, system default panel setting set in the factory will be loaded. You can subsequently change the panel setting to whatever you want, and then save the panel setting as default via this command. This default setting will be loaded at startup next time. You can always go back to the system default panel setting by clicking on [File]->[New] command.

The panel setting here includes the following parameters:

- Trigger Parameters
- Sampling Parameters
- Miscellaneous Parameters
- Oscilloscope Parameters
- Spectrum Analyzer Parameters
- Multimeter Parameters
- Spectrum 3D Plot Parameters
- Signal Generator Parameters
- Data Logger Parameters
- Device Test Plan Parameters
- DDP Viewer Parameters
- Screen Layout, including which instrument to be shown and the position of each instrument on the screen.

2.6.2.13 Save Current Panel Setting (Setting SubMenu) (ALT-S-S)

You can save the current panel setting into a Panel Setting File (*.psf) using this command. The saved panel setting can be loaded at later time. This will free you from re-adjusting the panel setting for a particular type of tests again and again.
2.6.2.14 Load Panel Setting (Setting SubMenu) (ALT-S-L)

You can load a panel setting from a previously saved Panel Setting File (*.psf) using this command. This will free you from re-adjusting the panel setting for a particular type of tests again and again.

2.6.2.15 Configure Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-P)

You can configure up to 20 most frequently used panel settings in the Hot Panel Setting Toolbar so that these settings can be loaded by just a single mouse click on their respective buttons.

Each line in the above figure defines one button in the Hot Panel Setting Toolbar. The parameters from left to right are:

- **Button No.**
 - The buttons are numbered from 1 to 20 from left to right in the Hot Panel Setting Toolbar.

- **Panel Setting File**
 - The path and file name of the panel setting file assigned to the button using the File Load button below.

- **File Load**
 - It is used to locate the panel setting file to be assigned to the button.

- **Text on Button**
 - The text entered in this edit box will be shown on the button. The text should preferably contains 3~5 characters and reflects concisely the function of the button.

- **Description**

<table>
<thead>
<tr>
<th>No.</th>
<th>Panel Setting File</th>
<th>Text on Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pcfOctave2.psf</td>
<td>DCT1</td>
<td>1/1 Octave Analysis (Avg. 10)</td>
</tr>
<tr>
<td>2</td>
<td>pcfOctave3.psf</td>
<td>DCT2</td>
<td>1/3 Octave Analysis (Avg. 10)</td>
</tr>
<tr>
<td>3</td>
<td>pcfOctave4.psf</td>
<td>DCT3</td>
<td>1/5 Octave Analysis (Avg. 10)</td>
</tr>
<tr>
<td>4</td>
<td>pcfOctave16.psf</td>
<td>DCT4</td>
<td>1/16 Octave Analysis (Avg. 10)</td>
</tr>
<tr>
<td>5</td>
<td>pcfOctave32.psf</td>
<td>NoiseL</td>
<td>Noise Level when there is no input signal (Avg. 10)</td>
</tr>
<tr>
<td>6</td>
<td>pcfOctave64.psf</td>
<td>NoiseL2</td>
<td>Noise Level when there is no input signal (Avg. 10)</td>
</tr>
<tr>
<td>7</td>
<td>pcfOctave128.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>8</td>
<td>pcfOctave256.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>9</td>
<td>pcfOctave512.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>10</td>
<td>pcfOctave1024.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>11</td>
<td>pcfOctave2048.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>12</td>
<td>pcfOctave4096.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>13</td>
<td>pcfOctave8192.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>14</td>
<td>pcfOctave16384.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>15</td>
<td>pcfOctave32768.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>16</td>
<td>pcfOctave65536.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>17</td>
<td>pcfOctave131072.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>18</td>
<td>pcfOctave262144.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>19</td>
<td>pcfOctave524288.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
<tr>
<td>20</td>
<td>pcfOctave1048576.psf</td>
<td>THD</td>
<td>THD, THD-NO, SNR, SINAD, Noise Level, ENOB (Avg. 10)</td>
</tr>
</tbody>
</table>
The description entered in this edit box will be shown as tooltip when you rest your mouse cursor on the button.

- **Clear**
 It is used to clear the button definition.

You can save the above configuration into a Hot Panel Setting Toolbar configuration file (*.hps) by clicking the “Save As” button at the bottom of the above dialog. You can load a Hot Panel Setting Toolbar configuration file by clicking the File Open button at the bottom of the dialog. The current Hot Panel Setting Toolbar configuration file used by the software is also displayed at the bottom.

The Hot Panel Setting Toolbar configuration file (*.hps) is a TXT file which can be edited directly using Windows Notepad. Direct editing allows configuring some special functions usually used for software customization. Panel Setting File field supports the following texts for special functions:

- **STARTSTOP**: Start / Stop the oscilloscope.
- **SETTING**: Different Setting Windows should be developed for different customized softwares.
- **EXIT**: Exit the software
- **HELP**: Display a help file. The help file should be placed in the software’s root directory. The file name should be put in the Description field.

In Pro edition and above, it is possible to change the placement of the Hot Panel Setting Toolbar: Top, Bottom, Left, Right. It is also possible to change the button size: Small (only text is displayed), Big (both text and icon are displayed), No Text (only icon is displayed). These changes will take effect after software restart.

STARTSTOP is a toggle button with “Running” state down and “Stop” state up. SETTING, EXIT, HELP are push buttons. The rest of buttons for Panel Setting File loading are push buttons when the panel setting is not locked. Otherwise, they are interlocked toggle buttons and only one of them will be in “down” state at any time. For the latter case, the loaded panel setting file name will be indicated in the title bar of the main window.

2.6.2.16 Show Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-H)

It is a toggle command to show or hide the Hot Panel Setting Toolbar.

2.6.2.17 Change Password (Setting SubMenu) (ALT-S-W)
You can change the password for unlocking the panel setting here. No password is set initially. If you want to add a password, you can leave the Current Password field empty and enter and confirm the new password. For changing the existing password, you need to enter the current password and enter and confirm the new password. To delete the password, just enter the current password and leave the New Password and New Password (Confirm) fields empty.

2.6.3 Instrument SubMenu

This submenu provides access to opening/closing each individual instrument provided.

2.6.3.1 Run (Instrument SubMenu) (ALT-I-R, CTRL-R or Enter)

This command will toggle between Run and Stop for data acquisition. The command is also available through the button in the Instrument Toolbar. The color of the button will toggle between red and green to indicate "Stop" and "Run" status.

2.6.3.2 Oscilloscope (Instrument SubMenu) (ALT-I-O)

This command will toggle between Open and Close for the Oscilloscope. The command is also available through the button in the Instrument Toolbar.

2.6.3.3 Spectrum Analyzer (Instrument SubMenu) (ALT-I-S)
This command will toggle between Open and Close for the Spectrum Analyzer. The command is also available through the button in the Instrument Toolbar.

2.6.3.4 Multimeter (Instrument SubMenu) (ALT-I-M)

This command will toggle between Open and Close for the Multimeter. The command is also available through the button in the Instrument Toolbar.

2.6.3.5 Spectrum 3D Plot (Instrument SubMenu) (ALT-I-D)

This command will toggle between Open and Close for the Spectrum 3D Plot. The command is also available through the button in the Instrument Toolbar.

2.6.3.6 Signal Generator (Instrument SubMenu) (ALT-I-G)

This command will toggle between Open and Close for the Signal Generator. The command is also available through the button in the Instrument Toolbar.

2.6.3.7 Device Test Plan (Instrument SubMenu) (ALT-I-P)

This command will toggle between Open and Close for the Device Test Plan. The command is also available through the button in the Instrument Toolbar.

2.6.3.8 Data Logger (Instrument SubMenu) (ALT-I-L)

This command will launch a Data Logger window. Up to 8 Data Logger windows can be opened. The command is also available through the button in the Instrument Toolbar.

2.6.3.9 DDP Viewer (Instrument SubMenu) (ALT-I-V)

This command will launch a DDP viewer window. Up to 16 DDP viewer windows can be opened. The command is also available through the button in the Instrument Toolbar.

2.6.4 Window SubMenu
The Window submenu provides the access to window arrangement functions.

2.6.4.1 Cascade (Window SubMenu) (ALT-W-C)

This command will cascade the opened views.

2.6.4.2 Tile Horizontally (Window SubMenu) (ALT-W-H)

This command will tile the opened views. For example, if both the Oscilloscope and Spectrum Analyzer are opened, then this command will make the two views each take up half of the screen in vertical direction.

2.6.4.3 Tile Vertically (Window SubMenu) (ALT-W-V)

This command will tile the opened views. For example, if both the Oscilloscope and Spectrum Analyzer are opened, then this command will make the two views each take up half of the screen in horizontal direction.

2.6.5 Help SubMenu

The Help SubMenu provides access to the help function and software version and license information. It also provides the function for locking/unlocking the panel setting.

2.6.5.1 Lock Panel Setting (Help SubMenu) (ALT-H-L or Ctrl-K)

This command will toggle between lock and unlock panel setting. If the panel setting is locked, then only the following operations are allowed by the software:
- Access to the Help SubMenu
- Run/Stop the Oscilloscope and the Signal Generator.
- Load a panel setting file via the buttons in the Hot Panel Setting Toolbar
- Save a file
- Invert Input Signal, Channel A Zeroing, Channel B Zeroing, Windows Recording Control, Windows Volume Control, Waveform Play, Waveform Cyclic Play

You can add a password for unlocking the panel setting via [Setting]>[Change Password], to allow only authorized person to unlock the panel setting if it has been locked. The software will start as locked if you tick “Lock Panel Setting after startup” via [Setting]>[Display].

You can establish two levels of operation of the software by combining the lock panel setting function with the Hot Panel Setting Toolbar. The two levels are: Engineer Level and Operator Level. The engineers will be given the password to unlock the panel setting, and they are able to access all functions provided by the software. The engineers should assign the frequently used panel setting files to the Hot Panel Setting Toolbar so that the operators can load them when the panel setting is locked.

2.6.5.2 Help Topics (Help SubMenu) (ALT-H-H or F1)

This command will open the Help window. You can use the Content Tab, Index Tab or Search Tab to locate the help topic you want.

2.6.5.3 Software Manual (Help SubMenu) (ALT-H-S)

This command will open the software manual.

2.6.5.4 Hardware Manual (Help SubMenu) (ALT-H-M)

This command will open the hardware manual of the ADC device. If the ADC device is not a VT hardware but the DAC device is, then the hardware manual of the DAC device will be opened instead. If both the ADC and DAC devices are not a VT hardware, then this option will grey out.

2.6.5.5 About (Help SubMenu) (ALT-H-A)

This command will open the About window which displays the software version and license information.

2.7 Cursor Reader and Markers

2.7.1 Cursor Reader
The cursor reader is shown when you left click and hold anywhere within the plot region of a view. It will stick to the actual measurement point nearest to the cursor in the horizontal direction and show its X and Y readings for both channels on the top region of the view. The cursor reader moves with the cursor and remains active until the left mouse button is released.

In Lissajous Pattern display, the cursor reader will show the X and Y readings at exactly the cursor position and will not stick to the actual measurement point.

2.7.2 Marker
Maximum two markers can be placed in the plot region of a view.

Double clicking the left mouse button anywhere within the plot region will place a marker on the screen at the actual measurement point nearest to the position of mouse click in the horizontal direction. Left double clicking places a marker for the left vertical axis while CTRL-Left double clicking places a marker for the right vertical axis. No marker will be placed if there is no corresponding vertical axis.

The second marker can be placed by Shift-Left double clicking or Shift-CTRL-Left double clicking.

Clicking anywhere outside the plot region in the view will remove all markers placed previously.

The horizontal and vertical readings of a marker will be displayed on the top region of the view. If two markers are placed, the reading difference between them will also be displayed.

2.7.3 Combined Use of Marker and Cursor Reader

You can place a marker as a fixed reference point and then use the cursor reader to read out the difference between the cursor and the reference point as the cursor moves. This is very useful, for example, when you want to measure the pulse width, the rise time or fall time.
2.8 Maximum, Minimum, Mean and RMS Values

The Oscilloscope will display the Maximum, Minimum, Mean and RMS value of each frame of data. The Mean value is the DC voltage and the RMS value is the AC voltage during the sweep time. In this regard, the oscilloscope is also a voltmeter.

2.9 Time Stamp

The time stamp displayed at the lower left corner of the Oscilloscope view represents the time (with accuracy in millisecond) of the first data point (i.e. leftmost data point) of the current frame of data. For most of cases, the two channels of data are sampled at the same time and thus only one time stamp is displayed. However, there are cases whereby Channel A is used for live input and Channel B is fed by the Signal Generator directly at software level (refer to the manual of the Signal Generator). In these cases, the time stamp for Channel A will be displayed and on its right hand side, the time difference between Channel A and Channel B will also be displayed, with accuracy of one sampling interval between the raw data. A negative value of the time difference means that the data of Channel B arrives earlier than that of Channel A.

2.10 Trigger Marker

Two markers will be displayed in the oscilloscope view to reflect the trigger parameters. One marker will be displayed on the left vertical axis to reflect the current Trigger Level (by the location of the marker on the vertical axis), Trigger Edge (by the arrow direction of the marker) and Trigger Source (by the color of the marker). The other marker will be displayed on the horizontal axis on the top to reflect the Trigger Delay (by the location of the marker on the horizontal axis) as well as the Trigger Source (by the color of the marker). Only negative Trigger Delay (i.e. pre-trigger) can be displayed. The trigger position can be found at the intercept of the two markers.

These markers are displayed only in one type of view: waveform display of Channel A and Channel B. They will not be displayed when Trigger Edge is “JP” or “DF”.

When the trigger marker for Trigger Level is shown, if you put the cursor on the top of it, the cursor will change from the Windows default one to . If you then press down and hold the left mouse button, you can adjust the Trigger Level by moving the cursor until you release the mouse button. You can adjust the Trigger Delay in a similar way.
2.11 DAQ Progress Bar

A DAQ progress bar will be displayed at the lower left corner of the Oscilloscope view under either of the following conditions:

- The Oscilloscope is started in non Record mode and the specified trigger condition has not been met for at least 5 seconds.
- The Oscilloscope is started in Record mode.

Black color is used to fill up the progress bar when no trigger event has been found, the time elapsed since the start of the Oscilloscope will be displayed. The progress bar will reset and change to green color after a trigger event is found in the returned DAQ buffer, the time elapsed since then will be displayed. The DAQ progress bar will be hidden again after a frame of data is collected, analyzed and displayed.

2.12 Record Mode

There are two ways to enter into the Record Mode:

- Press the above “Record” button in the Sampling Parameter Toolbar, or
- Select “Record” in the Sweep Time combo box and then press the “Run” button of the Oscilloscope.

Under the Record Mode, raw ADC data will be written into the hard disk continuously in WAV file format. Meanwhile, data analysis and display will still be performed in order to keep the screen updated in real time. Priority is given to the former process in order to try the best to ensure uninterrupted data recording. Whether the recorded data are continuous (i.e. the adjacent frames of data are connected smoothly without missing any data in between) or not depends on whether the ADC hardware supports continuous streaming, the system throughput, sampling frequency, bit resolution, number of sampling channels, etc. It is generally possible to record signals continuously without any interruption using sound cards. For VT DSOs using USB2.0, the limit would be a sampling rate of 10–20MHz, 8bits and single channel. Beyond this data rate limit, discontinuity may occur. When the recorded data are continuous, the DAQ progress bar at the bottom left corner of the Oscilloscope window will be filled with green color. Any discontinuity will be highlighted in red color.
The sweep time under this mode is defaulted at 100 ms (for the case of a sound card) and is adjustable via [Setting] > [Display] > "Record Mode" > "Frame Width". The record length under this mode is set via [Setting] > [Display] > "Record Mode" > "Duration". By default, the Duration is set to zero meaning that the recording process will stop automatically after 2 gigabytes of data have been recorded. The recording process can also be stopped manually by pressing the Run/Stop button in the Instrument Toolbar. It will automatically stop if 2 gigabytes of data have been recorded. Only Auto Trigger Mode and Normal Trigger Mode are allowed under this mode. Sampling parameters are prevented from being changed during the recording process by the software. Upon finishing recording, the recorded file will be opened automatically by the software in one frame mode if the length of the data is not too long, or in frame-by-frame mode otherwise. It may take quite long if the file is big.

If you start recording without opening a file (in this case, no file name will be displayed in the title bar of the main window of the program), then the software will automatically assign “Record1.wav” as the file name for this record. If you repeat the recording process by stopping and starting the recording again and again, then the file name will be incremented each time, e.g. Record2.wav, Record3.wav…. This file name incrementing process will be restarted only if you restart the program.

If you start recording on an opened file which does not have a file name as “Recordxxx.wav”, then the original file will be overwritten by the recorded data, and the file name will not change even if you repeat the recording process.

2.13 Roll Mode

Roll Mode is activated by ticking the above “Roll” button in the Sampling Parameter Toolbar. Under this mode, the Oscilloscope frame is split into many segments with the length of each segment equal to the Roll Width, which is set via [Setting] > [Display] > "Roll Mode" > "Roll Width". The Roll Width is set to 50 ms (for the case of a sound card) by default. Under the Roll Mode, the size of data acquisition is based on the Roll Width rather than the Record Length per sweep. The data displayed in the Oscilloscope view will shift left at a step of one Roll Width each time when a new segment of data arrives. The newly arrived data will be shown in the right most portion of the graph. You can consider using Roll Mode if the sweep time is too long (e.g. greater than 1 s) to avoid long time waiting for screen update. You must use Roll Mode (if it is available) when the Record Length per sweep is greater than the size of the ADC hardware buffer.

The Roll Mode button is enabled when the Record Length per sweep is four times or more of the Roll Width.

Under the Roll Mode, whether the acquired data are continuous (i.e. the adjacent segments of data are connected smoothly without missing any data in between) or not depends on whether the ADC hardware supports continuous streaming, the system throughput, sampling frequency, bit resolution, number of sampling channels, etc.
2.14 Sampling Parameter Auto Setting

When the signal under test is connected, you can let the software to choose proper sampling parameters such as Sweep Time and ADC Range by clicking the above “Auto” button in the Sampling Parameter Toolbar. You are not allowed to change any sampling parameters during this auto setting process. The auto setting process will be stopped automatically after the proper sampling parameters are found for the signal under test or timeout.

2.15 Magnifying Glass

The magnifying glass will show up when you put the cursor on the outer side of an axis, if the axis has a multiplier associated with it. The magnifying glass has three states:

- : Only zoom in is available.
- : Both zoom in and zoom out is available.
- : Only zoom out is available.

Pressing the left mouse button will zoom in one step and pressing the right mouse button will zoom out one step. Zoom in/out can also be performed using the mouse wheel. Mouse wheel, SHIFT + mouse wheel, CTRL + mouse wheel can be used to zoom in/out X, A, B axes respectively. Mouse wheel down & scroll, SHIFT + mouse wheel down & scroll, CTRL + mouse wheel down & scroll will return X, A, B axes to their default values respectively.

2.16 Context Menu

<table>
<thead>
<tr>
<th>Oscilloscope Processing…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscilloscope Y Scale…</td>
</tr>
<tr>
<td>Oscilloscope Chart Option…</td>
</tr>
<tr>
<td>Oscilloscope Reference…</td>
</tr>
<tr>
<td>Oscilloscope Copy As Bitmap…</td>
</tr>
<tr>
<td>Oscilloscope Copy As Text…</td>
</tr>
<tr>
<td>Oscilloscope Export…</td>
</tr>
<tr>
<td>Oscilloscope Print…</td>
</tr>
<tr>
<td>Oscilloscope Print Preview</td>
</tr>
</tbody>
</table>
The above context menu will be shown when right clicking anywhere within the Oscilloscope view. It provides additional convenience to you. All menu items in the context menu can also be found in the main menu of the Oscilloscope, except the following two items:

- **Copy As Bitmap**

 It is similar to the Oscilloscope Export (as Bitmap) function. Instead of saving the bitmap image of the oscilloscope view to the hard disk, it copies the image to the clipboard which can be subsequently pasted out into other programs such as Microsoft Word.

- **Copy As Text**

 It is similar to the Oscilloscope Export (as Text) function. Instead of saving the texts of the oscilloscope data to the hard disk, it copies the data to the clipboard which can be subsequently pasted out into other programs such as Microsoft Excel. Note the data in the clipboard is Tab separated instead of comma separated.
3 Spectrum Analyzer

3.1 Overview

This is a dual channel Spectrum Analyzer, providing seven types of views:

- Real time Amplitude Spectrum
- Real time Phase Spectrum
- Real time Auto Correlation Function
- Real time Cross Correlation Function
- Real time Coherence / Non-Coherence Function
- Real time Transfer Function (Bode Plot, Frequency Response, or Gain and Phase Plot) / Impedance Analyzer
- Real time Impulse Response

with adjustable FFT size ranging from 128 to 4194304, adjustable window overlap percentage (0%–99%), and 55 selectable window functions such as Rectangle, Triangle, Hanning, Hamming, Blackman, Kaiser. It supports display in logarithmic scale (dBr, dBV, dBu, dBFS, dB), octave analysis (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96), frequency compensation, frequency weighting (Flat, A weighting, B weighting, C weighting, ITU-R 468 weighting), moving average smoothing, DC removal, peak hold, linear average, exponential average, and parameter measurements (THD, THD+N, SINAD, SNR, Noise Level, IMD-SMPTE/DIN, IMD-CCIF1, IMD-CCIF2, Crosstalk, Bandwidth, Harmonics, Peaks, Energy in user defined frequency bands,
Wow & Flutter, Sound Loudness and Sharpness, Total Non-Coherent Distortion+Noise), Power Spectral Density display, etc.

The Spectrum Analyzer shares the same Trigger Parameters, Sampling Parameters and Miscellaneous Parameters with the Oscilloscope. Please refer to the relevant sections in the Oscilloscope for details.

3.2 View Parameters

View parameters determine how the collected data are analyzed and displayed.

There are seven types of views in the Spectrum Analyzer:

- Amplitude Spectrum
- Phase Spectrum
- Auto-Correlation Function
- Cross-Correlation Function
- Coherence / Non-Coherence Function
- Transfer Function / Impedance Analyzer
- Impulse Response

Spectrum Analyzer generates many DDPs. For a complete list of these DDPs, please refer to Section 6.2.1.

3.2.1 View Parameters for Amplitude Spectrum Display

Selecting Amplitude Spectrum in the above View Type selection box switches the Spectrum Analyzer to amplitude spectrum display mode, which shows the frequency components’ amplitude vs frequency graph of the measured signal. It can also be used to show impedance vs frequency plot after some procedures. This will be described later.

The following figure illustrates the amplitude spectrum of a 1 kHz square wave with X axis in linear scale and Y axis in normalized linear scale. It shows that a square wave consists of a fundamental frequency and an infinite number of odd harmonics, each of which has an amplitude equal to 1/N of that of the fundamental frequency, where N is the order of the harmonic.
The following figure illustrates the 1/6 octave amplitude spectrum of a 50-ms stereo pop song replayed and then captured by a sound card. The X axis is in 1/6 octave scale and the Y axis is in dBV scale.

3.2.1.1 Frequency Range (F)
36 options are available for Frequency Range (F). They are: Auto, 1 Hz, 2 Hz, 5 Hz, 10 Hz, 20 Hz, 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz, 25 kHz, 50 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz, 2 MHz, 5 MHz, 10 MHz, 20 MHz, 50 MHz, 100 MHz, 200 MHz, 500 MHz, 1 GHz, 2 GHz, 5 GHz, 10 GHz, 20 GHz, 50 GHz, 100 GHz.

When "Auto" is selected, the Frequency Range will be set automatically by the software based on the following formula:

\[
\text{Frequency Range} = \text{the nearest integer that is greater than } \frac{1}{2} \text{ of [Sampling Frequency]}
\]

An important principle in digital signal processing is the "Nyquist-Shannon Sampling Theorem" which states that an analog signal that has been sampled can be perfectly reconstructed from the samples if the sampling frequency is greater than twice of the highest frequency in the original signal. This means that if you wish to measure a
3,000 Hz signal, the sampling rate must be greater than 6,000 Hz, otherwise aliasing will occur.

In Amplitude Spectrum Display, the horizontal axis can be displayed in linear, logarithmic, 1/1 octave, 1/3 octave, 1/6 octave, 1/12 octave, 1/24 octave, 1/48 octave, or 1/96 octave scale, which can be selected via [Setting]->[Spectrum Analyzer X Scale].

3.2.1.2 Frequency Multiplier

The Frequency Multiplier is the zooming factor for the horizontal axis. There are 10 options available: ×1, ×2, ×5, ×10, ×20, ×50, ×100, ×200, ×500, ×1000.

When "×1" is selected, the full Frequency Range is displayed over the width of the view.

If you change the Frequency Multiplier to "×N" which is greater than 1, then only 1/N of the full Frequency Range is displayed over the width of the view, with a horizontal scrollbar at the bottom which allows you to scroll over the full range of the Frequency.

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor just below the horizontal axis.

3.2.1.3 Channel A Display Range

In Amplitude Spectrum Display, there are two modes for the vertical axis, which can be selected via [Setting]->[Spectrum Analyzer Y Scale]:

3.2.1.3.1 Absolute Display Mode

The vertical axis is scaled in engineering unit. All data points are plotted based on their absolute values, in V(rms), dBV, dBu, dB, or dBFS. Note that by definition, the reference voltages for dBV and dBu are 1 V(rms) and 0.775 V(rms) respectively. 1 dBu in amplitude spectrum is equivalent to 1 dBm in power spectrum when the load is 600 ohms. The reference levels for dB for both channels are user definable. For example, you can calibrate them to sound pressure level. Please refer to the section
for 0dB Reference Vr described previously. The reference voltage for dBFS is the ADC full-scale voltage (1/2 Vpp).

3.2.1.3.1.1 Linear Scale

For linear scale such as V(rms), the available Display Range options are: Off, Auto, 1 n, 2 n, 5 n, 10 n, 20 n, 50 n, 100 n, 200 n, 500 n, 1 μ, 2 μ, 5 μ, 10 μ, 20 μ, 50 μ, 100 μ, 200 μ, 500 μ, 1 m, 2 m, 5 m, 10 m, 20 m, 50 m, 100 m, 200 m, 500 m, 1 k, 2 k, 5 k, 10 k, 20 k, 50 k, 100 k, 200 k, 500 k, 1 M, 2 M, 5 M, 10 M, 20 M, 50 M, 100 M, 200 M, 500 M. Note that the engineering unit of the above options is determined by the engineering unit of the sensor for Channel A, which can be set via [Setting] > [Calibration] > [Sensor] > [Unit].
When "Off" is selected, the data in Channel A will not be displayed. When "Auto" is selected, the Display Range for Channel A will be set automatically by the software based on the following formula:

\[
\text{Display Range} = \text{the nearest integer that is greater than the value of } \frac{[\text{ADC Range}]}{[\text{Sensor Sensitivity}]}
\]

where the sensor sensitivity is set via [Setting] > [Calibration] > [Sensor] > [Sensitivity].

3.2.1.3.1.2 Logarithmic Scale

For logarithmic scale such as dBV, the available Display Range options are: 50 dB, 100 dB, 150 dB, 200 dB. Note that the bracket "<>" means that the value represents only the span of the axis, the upper limit of the axis is determined by the ADC Range as well as the Sensor Sensitivity and the lower limit is equal to [Upper Limit] - [Span]. A Display Range value without the bracket "<>" represents a range from 0 and the Display Range value, which is the case for dBFS.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.1.3.2 Relative Display Mode

The vertical axis is scaled in relative value, in either linear or dBr (logarithmic) scale. All data points are plotted based on the relative value with regard to the maximum value in the current measurement.

3.2.1.3.2.1 Linear Scale

In this mode, the vertical axis ranges from 0 to 1 where 1 corresponds to the highest absolute vertical value in the measurement.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.1.3.2.2 Logarithmic Scale (dBr)
In this mode, the vertical axis ranges from 0 to the Display Range value selected, where 0 dB corresponds to the highest absolute vertical value in the measurement.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.1.4 Channel A Multiplier

The Multiplier for Channel A is the zooming factor for A axis. There are 9 options available: Off, \times 1, \times 2, \times 5, \times 10, \times 20, \times 50, \times 100, \times 200.

When "Off" is selected, the full Display Range for Channel A is displayed over the height of the View.

When "\times 1" is selected, initially the full range is displayed over the height of the view with a vertical scroll bar on the left of the view. You can use the scroll bar to move the data curve for Channel A up and down.

If you change the multiplier to "\times N" which is greater than 1, then only 1/N of the full range is displayed over the height of the view, with a vertical scrollbar on the left of the view. You can use the scroll bar to scroll over the full Display Range.

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor on the left side of A axis.

3.2.1.5 Channel B Display Range

3.2.1.5.1 Absolute Display Mode

3.2.1.5.1.1 Linear Scale
For linear scale such as V(rms), the available Display Range options are: Off, Auto, 1 n, 2 n, 5 n, 10 n, 20 n, 50 n, 100 n, 200 n, 500 n, 1 µ, 2 µ, 5 µ, 10 µ, 20 µ, 50 µ, 100 µ, 200 µ, 500 µ, 1 m, 2 m, 5 m, 10 m, 20 m, 50 m, 100 m, 200 m, 500 m, 1 k, 2 k, 5 k, 10 k, 20 k, 50 k, 100 k, 200 k, 500 k, 1 M, 2 M, 5 M, 10 M, 20 M, 50 M, 100 M, 200 M, 500 M. Note that the engineering unit of the above options is determined by the engineering unit of the sensor for Channel B, which can be set via [Setting] > [Calibration] > [Sensor] > [Unit].

When "Off" is selected, the data in Channel B will not be displayed. When "Auto" is selected, the Display Range for Channel B will be set automatically by the software based on the following formula:

\[
\text{Display Range} = \text{the nearest integer that is greater than the value of } \frac{\text{[ADC Range]}}{\text{[Sensor Sensitivity]}}
\]
where the sensor sensitivity is set via [Setting] > [Calibration] > [Sensor] > [Sensitivity].

3.2.1.5.1.2 Logarithmic Scale

For logarithmic scale such as dBV, the available Display Range options are: 50 dB, 100 dB, 150 dB, 200 dB. Note that the bracket “<>” means that the value represents only the span of the axis, the upper limit of the axis is determined by the ADC Range as well as the Sensor Sensitivity and the lower limit is equal to [Upper Limit] - [Span]. A Display Range value without the bracket “<>” represents a range from 0 and the Display Range value, which is the case for dBFS.

When "Off" is selected, the data in Channel B will not be displayed.

3.2.1.5.2 Relative Display Mode

The vertical axis is scaled in relative value, in either linear or dBr (logarithmic) scale. All data points are plotted based on the relative value with regard to the maximum value in the current measurement.

3.2.1.5.2.1 Linear Scale

In this mode, the vertical axis ranges from 0 to 1 where 1 corresponds to the highest absolute vertical value in the measurement.

When "Off" is selected, the data in Channel B will not be displayed.

3.2.1.5.2.2 Logarithmic Scale (dBr)

In this mode, the vertical axis ranges from 0 to the Display Range value selected, where 0 dB corresponds to the highest absolute vertical value in the measurement.
When "Off" is selected, the data in Channel B will not be displayed.

For single channel measurement, this control is disabled.

3.2.1.6 Channel B Multiplier

The Multiplier for Channel B is the zooming factor for B axis. There are 9 options available: Off, ×1, ×2, ×5, ×10, ×20, ×50, ×100, ×200.

When "Off" is selected, the full Display Range for Channel B is displayed over the height of the View.

When "×1" is selected, initially the full range is displayed over the height of the view with a vertical scroll bar on the right of the view. You can use the scroll bar to move the data curve for Channel B up and down.

If you change the multiplier to "×N" which is greater than 1, then only 1/N of the full range is displayed over the height of the view, with a vertical scrollbar on the right of the view. You can use the scroll bar to scroll over the full Display Range.

For single channel measurement, this control is disabled.

This multiplier can also be adjusted via the magnifying glass which will be shown if you put the cursor just on the right side of B axis.

3.2.1.7 FFT Size
This parameter is applicable to all types of views in the Spectrum Analyzer. 16 options are available: 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304.

The selected FFT size directly affects the resolution of the resulting spectra. The number of spectral points is always 1/2 of the selected FFT size plus one. Thus a 1024-point FFT produces 513 spectral points.

The frequency resolution of each spectral point is equal to \(\frac{\text{Sampling Frequency}}{\text{FFT Size}} \). For instance, if the FFT size is 1024 and the Sampling Frequency is 44100 Hz, the resolution of each spectral point would be:

\[
44100 / 1024 = 43.07 \text{ Hz}
\]

Larger FFT size provides higher spectral resolution but take longer time to compute.

If the FFT size is greater than the number of data points per sweep (Record Length), then zeros will be padded at the end of the actual measurement data during FFT computation. It should however be noted that the real frequency resolution is equal to \(\frac{\text{Sampling Frequency}}{\text{Number of data points}} \) in this case, although the apparent FFT frequency resolution is \(\frac{\text{Sampling Frequency}}{\text{FFT Size}} \). In other words, zero padding does not improve the real frequency resolution although it does provide more spectral points via interpolation.

If the FFT size is less than the number of data points per sweep (record length), then the measurement data will be split into different segments with the size of each segment equal to the FFT size. The last segment of data will be dropped if its size is not equal to the FFT size. The final result will be obtained by averaging the FFT results from all segments. It should be noted that this approach is used for Amplitude Spectrum, Auto Correlation Function, Cross Correlation Function, Coherence Function, Transfer Function, and Impulse Response, except Phase Spectrum where only the first segment of data is used. The average method here is referred to as Intra-Frame Average in contrast to the Inter-Frame Average set through [Setting]->[Spectrum Analyzer Processing]->[Inter-Frame Processing].
The following table listed the average method used for each type of analysis:

<table>
<thead>
<tr>
<th>Analysis Type</th>
<th>Amplitude Spectrum</th>
<th>Phase Spectrum</th>
<th>Auto Correlation</th>
<th>Cross Correlation</th>
<th>Coherence Function</th>
<th>Transfer Function</th>
<th>Impulse Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-Frame Average</td>
<td>Power Average</td>
<td>No</td>
<td>Power Average</td>
<td>Power Average</td>
<td>Power Average</td>
<td>Power Average</td>
<td>Power Average</td>
</tr>
<tr>
<td>Inter-Frame Average</td>
<td>Power Average</td>
<td>Normal Average</td>
<td>Normal Average</td>
<td>Normal Average</td>
<td>Normal Average</td>
<td>Normal Average</td>
<td>Normal Average</td>
</tr>
</tbody>
</table>

Power Average: The averaging is performed in power spectrum, such as auto power spectrum or cross power spectrum, during the computing process. For amplitude spectrum, it is often called “RMS average”.

Normal Average: arithmetic average.

You can adjust the number of data points per sweep (Record Length) before data sampling such that it equals to an integer multiple of the FFT size, if necessary.

Number of FFT segments and FFT frequency resolution are displayed at the lower left corner of the Spectrum Analyzer view.

The following figure shows a 1-second white noise sampled at 48 kHz. Thus the Record Length is 48000 samples. The FFT size is 65536 and Rectangle window function (i.e. No window function) is applied. Thus the apparent FFT resolution = 48000/65536 = 0.732422 Hz. 65536-48000=17536 zeros are padded at the end of the originally sampled data during FFT. “FFT Segments: <1 Resolution: 0.732422 Hz” is thus displayed at the lower left corner of the Spectrum Analyzer view to indicate the zero padding and frequency resolution.

The following figure shows the amplitude spectrum of the same data as above. The only difference is that the FFT size is changed from 65536 to 128. Thus the apparent FFT resolution = 48000 Hz / 128 = 375 Hz. The number of FFT segment is 48000.
samples / 128 samples = 375 (segments). “FFT Segments: 375 Resolution: 375 Hz” is thus displayed at the lower left corner of the Spectrum Analyzer view to indicate the intra-frame average over 375 FFT segments as well as the frequency resolution. The average method here is power average. Due to this averaging process and the coarser frequency resolution, the amplitude spectrum in the figure below is much smoother than that in the figure above.

A white noise has a flat amplitude spectrum. The power of the white noise distributes uniformly across all FFT bins. The amplitude level is around -29 dBFS in the figure below, which is about 27 dB higher than that in the figure above. The width of a FFT bin in the figure below is 375 Hz while that in the figure above is 0.732422 Hz. Therefore each FFT bin in the figure below contains $10 \times \log_{10}(375/0.732422) = 27$ dB’s power more if the power is distributed uniformly.

To know more about the basics of FFT, please refer to: *FFT Basics and Case Study using Multi-Instrument*.

3.2.1.8 Window Function
55 windowing functions are supported: Rectangle, Triangle (or Fejer), Hanning, Hamming, Blackman, Exact Blackman, Blackman Harris, Blackman Nuttall, Flat Top, Exponential (Exponential 0.1), Gaussian (Gaussian 2.5, Gaussian 3.0, Gaussian 3.5),
Welch (or Riesz), Cosine (Cosine 1.0, Cosine 3.0, Cosine 4.0, Cosine 5.0), Riemann (or Lanczos), Parzen, Tukey (Tukey 0.25, Tukey 0.50, Tukey 0.75), Bohman, Poisson (Poisson 2.0, Poisson 3.0, Poisson 4.0), Hanning-Poisson (Hanning-Poisson 0.5, Hanning-Poisson 1.0, Hanning-Poisson 2.0), Cauchy (Cauchy 3.0, Cauchy 4.0, Cauchy 5.0), Bartlett-Hann, Kaiser (Kaiser 0.5, Kaiser 1, Kaiser 2, Kaiser 3, Kaiser 4, Kaiser 5, Kaiser 6, Kaiser 7, Kaiser 8, Kaiser 9, Kaiser 10, Kaiser 11, Kaiser 12, Kaiser 13, Kaiser 14, Kaiser 15, Kaiser 16, Kaiser 17, Kaiser 18, Kaiser 19, Kaiser 20). The value behind the window name is the parameter value of that window. Please refer to relevant reference books for the definition of these window functions.

Hanning window is used by default. It should be noted that except Rectangle window, the rest of window functions are not applicable to Auto Correlation Function and Cross Correlation Function and thus are disabled accordingly.

A 1024-point 24-bit WAV file of each of the above window is provided in the WAV\window directory of the software and can be used to evaluate each window’s behavior in frequency domain. For this purpose, the following changes to the system default settings for the Spectrum Analyzer are required after loading the WAV file:

- [Window]: Rectangle;
- [FFT size]: >1024;
- [Setting] > [Spectrum Analyzer Processing] > [Intra-Frame Processing] > [Remove DC]: Unchecked;

The following changes to the system default settings for the Spectrum Analyzer are recommended:

- [Setting] > [Spectrum Analyzer Y Scale]: dBr
- [Horizontal Axis Multiplier]: ×20

The following figure shows the spectrum of a Rectangle window.
The following figure shows the spectrum of a Hanning window.
The following figure shows the spectrum of a Hamming window.

![Hamming Window Spectrum](image1)

The following figure shows the spectrum of a Blackman window.

![Blackman Window Spectrum](image2)
The following figure shows the spectrum of a Blackman-Harris (4 terms) window.

The following figure shows the spectrum of a Kaiser5 window.
From the above six figures, some important characteristics of the six windows can be readily obtained.

<table>
<thead>
<tr>
<th>Window Function</th>
<th>Highest Side Lobe Level (dB)</th>
<th>Side Lobe Fall Off Rate (dB/Octave)</th>
<th>-3dB Main Lobe Width (bins)</th>
<th>-6dB Main Lobe Width (bins)</th>
<th>Scallop Loss (dB)</th>
<th>Coherent Gain</th>
<th>Equivalent Noise Bandwidth (bins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>-13</td>
<td>-6</td>
<td>0.88</td>
<td>1.21</td>
<td>3.92</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hanning</td>
<td>-32</td>
<td>-18</td>
<td>1.44</td>
<td>2.00</td>
<td>1.42</td>
<td>0.5</td>
<td>1.50</td>
</tr>
<tr>
<td>Hamming</td>
<td>-43</td>
<td>-6</td>
<td>1.30</td>
<td>1.81</td>
<td>1.75</td>
<td>0.54</td>
<td>1.36</td>
</tr>
<tr>
<td>Blackman</td>
<td>-58</td>
<td>-6</td>
<td>1.64</td>
<td>2.29</td>
<td>1.10</td>
<td>0.42</td>
<td>1.73</td>
</tr>
<tr>
<td>Blackman-Harris</td>
<td>-92</td>
<td>-6</td>
<td>1.90</td>
<td>2.66</td>
<td>0.83</td>
<td>0.36</td>
<td>2.00</td>
</tr>
<tr>
<td>(4 terms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaiser5</td>
<td>-120</td>
<td>-6</td>
<td>2.16</td>
<td>3.03</td>
<td>0.64</td>
<td>0.31</td>
<td>2.28</td>
</tr>
</tbody>
</table>

The following figure summarizes the behavior of the above six windows in both time domain and frequency domain. The figure is obtained via the following steps:

1. Use “File Open” to open the WAV file of Rectangle window.
2. Use “File Combine” to open the WAV file of another window.
3. Set the settings for the Spectrum Analyzer properly as mentioned before
4. Copy both curves in the Oscilloscope and Spectrum Analyzer As Reference Curves
5. Use “File Combine” to import another two WAV files
6. Copy both curves in the Oscilloscope and Spectrum Analyzer As Reference Curves
7. Repeat 5.
Spectral leakage is the result of the assumption in the FFT algorithm that the time record in a FFT segment is exactly repeated throughout all time and that signals contained in a FFT segment are thus periodic at intervals that correspond to the length of the FFT segment. If the time record in a FFT segment has a non-integer number of cycles, this assumption is violated and spectral leakage occurs. Spectral leakage distorts the measurement in such a way that energy from a given frequency component is spread over adjacent frequency lines or bins. In most cases, you cannot guarantee that you are sampling an integer number of cycles. Choosing window function correctly to suppress the spectral leakage for a certain measurement is thus critical. To choose a window function, you must guess the signal frequency content. If the signal contains strong interfering frequency components distant from the frequency of interest, choose a window with a high side lobe roll-off rate. If there are strong interfering signal near the frequency of interest, choose a window with a low highest side lobe level. If the frequency of interest contains two or more signals very near to each other, then frequency resolution is very important. It is best to choose a window with a very narrow main lobe. If the amplitude accuracy of a single frequency component is more important than the exact location of the component in a given frequency bin, choose a window with a wide main lobe. If the signal spectrum is rather flat or broadband in frequency content, use the Rectangle window. In general, the Hanning window has a good frequency resolution and reduces spectral leakage. It is satisfactory in 95% of cases.

To know the characteristics of more window functions, please refer to: Evaluation of Various Window Function using Multi-Instrument.

Download link:
3.2.1.9 *Window Overlap Percentage*

The use of window function suppresses greatly the data at the edges of the window. As a result, these data contribute much less to the analysis result than the data at the center of the window. To make full use of the acquired data, FFT segments can be overlapped. The overlap ratio can be set via the Window Overlap Percentage combo box. It can be set from 0% to 99%. This combo box is enabled only when the number of data points per sweep (record length) is greater than the FFT size.

3.2.1.10 *Impedance Measurement Mode*

Amplitude Spectrum mode can be used to measure impedance using the single-channel method described below. It is possible to use two input channels of the measuring device to measure two impedances simultaneously. Two connection methods are supported in the software (see figure below).
where Z_x is the impedance to be measured, R_r the reference resistor, V_o the output voltage from the signal generator and V_i the input voltage fed by the voltage divider formed by Z_x and R_r. Both V_o and V_i are ground referenced, so measuring devices with either ground referenced inputs or differential inputs can be used. The input impedance of the measuring device must be much higher than that of Z_x and R_r so that their effect on the measurement accuracy can be ignored. The output impedance and overall frequency response of the measuring device do not affect the measurement accuracy directly, as the same input channel is used to measure V_o and V_i, but it is still recommended for the measuring device to have a low output impedance and a flat overall frequency response.

R_r is an external reference resistor. You need to find the resistor and make the connection by yourself. It is recommended to have R_r’s value comparable to that of Z_x. The actual value of R_r should be entered into the $R_r(\Omega)$ edit box in [Spectrum Analyzer Y Scale] dialog box. The actual connection used also needs to be selected there. In Connection 1, $Z_x = R_r \times (V_o-V_i) / V_i$ while in Connection 2, $Z_x = R_r \times V_i / (V_o-V_i)$. To achieve good measurement accuracy, significant stimulus energy must be present in the frequency range of interest. Commonly used signals are chirp signal (frequency linearly or logarithmically swept sine) and multitones capable of simultaneously stimulating all FFT/octave frequency bands in the frequency range of interest. Unlike white and pink noises, they have a repeatable waveform. This is important when V_o and V_i are measured in two separate steps. Various average methods can be used to smoothen the result except the inter-frame peak-hold, linear average with the “forever” option and exponential average.

Two steps are required:

(1) Step 1

V_o is measured and the Spectrum Analyzer Y scale MUST be set to Vrms. After V_o’s amplitude spectrum (in Vrms) is obtained. Right click anywhere within the Spectrum Analyzer window and select “Spectrum Analyzer Export” to export it as a TXT file. Then right click anywhere within the Spectrum Analyzer window again and select “Spectrum Analyzer Y Scale”. Tick “Convert to Impedance” checkbox and load the TXT file saved previously as the Reference V_o file (see figure below).

(2) Step 2
Vi is measured with exactly the same sampling, processing and analysis settings as Step 1, except the voltage measurement range can be changed if the measuring device is voltage calibrated. In case the settings in Step 2 is different from those in Step 1, the reference Vo file will be invalid and the “Convert to Impedance” checkbox will be unticked automatically.

It should be noted that in most of the cases, Step 1 needs only to be conducted once as long as the signal generator has a sufficiently low output impedance so that its output voltage Vo does not virtually vary with Zx + Rr. For example, many audio power amplifiers have an output impedance approaching 0. It is also possible to use the signal generator’s internal resistance as the reference resistor Rr so as to simplify the connection. For example, the signal generator of VT DSO-2810E, 2820E, 2A10E and 2A20E have an output impedance (resistance) of 50Ω, thus they can be readily used to measure the impedance of a Device Under Test such as a speaker. In this case, the reference Vo can be measured through measuring Vi without the connection of Zx (refer to the above Connection 2) given that the input impedance of the measuring device is high enough. In other words, Step 1 is to measure Vi without the connection of Zx and Step 2 is to measure Vi with the connection of Zx. This method is
applicable to Connection 2 only. The following figure shows the connection of this method.

Under the impedance measurement mode, Channel A Display Range and Channel B Display Range will be updated to display impedance in Ω. The “Auto” option of the display range is about 5 times of R_r. The following DDPs are generated by this mode:

1. f_1Freq_A(Hz): Frequency at the peak impedance in Ch. A
2. f_1RMS_A(EU): Peak impedance in Ch. A
3. InBandMinF_A(Hz): Frequency at which the minimum impedance is located in the specified frequency band in Ch. A
4. InBandMinRMS_A(EU): The minimum impedance in the specified frequency band in Ch. A
5. InBandMaxF_A(Hz): Frequency at which the maximum impedance is located in the specified frequency band in Ch. A
6. InBandMaxRMS_A(EU): The maximum impedance in the specified frequency band in Ch. A
7. oBandRMS_A(EU)_Array[?]: Impedance value in a particular octave band in Channel A. “?” should be replaced by the actual band number starting from 0.

A similar set of DDPs are also generated for Channel B: f_1Freq_B(Hz), f_1RMS_B(EU), InBandMinF_B(Hz), InBandMinRMS_B(EU), InBandMaxF_B(Hz), InBandMaxRMS_B(EU), oBandRMS_B(EU)_Array[?].

The following examples use different stimuli and configurations to measure a 2.5” 8Ω speaker’s impedance. The first three examples use VT DSO-2A20E as the ADC device and a sound card as the DAC device, with an external 25Ω reference resistor R_r using Connection 1. The latter three examples use VT DSO-2A20E as both the ADC and DAC device, and its 50Ω output impedance (resistance) as the reference resistor R_r, based on Connection 2. To avoid the interference from the automatically
generated oscilloscope probe calibration signal, switch it off via [Setting]>[DAC Device]> “Probe CAL” before tests.

(1) Multitones stimulus aligned to FFT bands

Oscilloscope:
- ADC Device: VT DSO-2A20E, Bit Resolution: 16
- Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
- Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
- FFT size: 32768, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: 200-frame Linear Average
- X Scale: Log, Y Scale: Vrms,
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: Sound Card Headphone Output, Duration: Loop
- Waveform: Multitones aligned to FFT, Frequency Range: 10 Hz ~ 21 kHz
- Sampling Frequency: 48 kHz
- Note: It will take quite a long time INITIALLY to generate the signal

Step 1:

The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at $0.443 \times \text{[Sampling Frequency]} = 0.443 \times 50 \text{ kHz} = 22.15 \text{ kHz}$ under its 16-bit mode. Note that there is no need to compensate the frequency response in this test.

Step 2:
The measured resonant frequency is 397 Hz at the impedance peak 10.5 Ω. The lowest impedance is 6.6 Ω at the lower frequency end.

(2) Multitones stimulus aligned to 1/24 Octave bands

Oscilloscope:
- ADC Device: VT DSO-2A20E, Bit Resolution: 16
- Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
- Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
- FFT size: 262144, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: 200-frame Linear Average
- X Scale: 1/24 octave, Y Scale: Vrms,
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: Sound Card Headphone Output, Duration: Loop
- Waveform: Multitones aligned to 1/24 octave, Frequency Range: 10 Hz ~ 24 kHz
- Sampling Frequency: 48 kHz

Step 1:
The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at $0.443 \times [\text{Sampling Frequency}] = 0.443 \times 50 \text{ kHz} = 22.15 \text{ kHz}$ under its 16-bit mode. The small undulation at the lower frequency end is due to the fact that octave bands have a much higher resolution at lower frequencies and thus call for a longer record length in the oscilloscope. Note that there is no need to compensate the frequency response in this test.

Step 2:

The measured resonant frequency is 397 Hz at the impedance peak 10.7 Ω. The lowest impedance is 6.5 Ω at the lower frequency end.

(3) Frequency logarithmically swept sine wave
Oscilloscope:
ADC Device: VT DSO-2A20E, Bit Resolution: 16
Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
Trigger Mode: Single, Trigger Level: 1%

Spectrum Analyzer:
FFT size: 262144, Window Function: Rectangle
Intra-Frame Processing: Smooth via Moving Average: 10 points
Inter-Frame Processing: None
X Scale: 1/96 octave, Y Scale: Vrms,
Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
DAC Device: Sound Card Headphone Output, Duration: 400 ms
Waveform: Frequency logarithmically swept sine wave from 10 Hz to 21 kHz
Sampling Frequency: 48 kHz

Step 1:

The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at $0.443 \times \text{Sampling Frequency} = 0.443 \times 50 \text{ kHz} = 22.15 \text{ kHz}$ under its 16-bit mode. The small undulation at the lower frequency end is due to the fact that octave bands have a much higher resolution at lower frequencies and thus call for a longer record length in the oscilloscope. Note that there is no need to compensate the frequency response in this test.

Step 2:
The measured resonant frequency is 386 Hz at the impedance peak 10.7 Ω. The lowest impedance is 6.7 Ω at the lower frequency end.

(4) Multitones stimulus aligned to FFT bands

Oscilloscope:
- ADC Device: VT DSO-2A20E, Bit Resolution: 16
- Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
- Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
- FFT size: 32768, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: 200-frame Linear Average
- X Scale: Log, Y Scale: Vrms,
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: VT DSO-2A20E streaming mode, Probe CAL: Disabled
- Waveform: Multitones aligned to FFT, Frequency Range: 10 Hz ~ 21 kHz
- Sampling Frequency: 200 kHz, Duration: Loop
- Note: It will take quite a long time INITIALLY to generate the signal

Step 1:
The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at $0.443 \times \text{[Sampling Frequency]} = 0.443 \times 50 \text{ kHz} = 22.15 \text{ kHz}$ under its 16-bit mode. Note that there is no need to compensate the frequency response in this test.

Step 2:

The measured resonant frequency is 394 Hz at the impedance peak 10.6 Ω. The lowest impedance is 6.8 Ω at the lower frequency end.

(5) Multitones stimulus aligned to 1/24 Octave bands

Oscilloscope:
ADC Device: VT DSO-2A20E, Bit Resolution: 16
Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
- FFT size: 262144
- Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: 200-frame Linear Average
- X Scale: 1/24 octave, Y Scale: Vrms,
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: VT DSO-2A20E streaming mode, Probe CAL: Disabled
- Waveform: Multitones aligned to 1/24 octave, Frequency Range: 10 Hz ~ 24 kHz
- Sampling Frequency: 200 kHz, Duration: Loop

Step 1:

The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at 0.443 × [Sampling Frequency] = 0.443 × 50 kHz = 22.15 kHz under its 16-bit mode. The small undulation at the lower frequency end is due to the fact that octave bands have a much higher resolution at lower frequencies and thus call for a longer record length in the oscilloscope. Note that there is no need to compensate the frequency response in this test.

Step 2:
The measured resonant frequency is 397 Hz at the impedance peak 10.5 Ω. The lowest impedance is 6.6 Ω at the lower frequency end.

(6) Frequency logarithmically swept sine wave

Oscilloscope:
- ADC Device: VT DSO-2A20E, Bit Resolution: 16
- Sampling Frequency: 50 kHz, Record Length: 400 ms (20000 samples)
- Trigger Mode: Single, Trigger Level: 1%

Spectrum Analyzer:
- FFT size: 262144, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: None
- X Scale: 1/96 octave, Y Scale: Vrms,
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: VT DSO-2A20E streaming mode, Probe CAL: Disabled
- Waveform: Frequency logarithmically swept sine wave from 10 Hz to 21 kHz
- Sampling Frequency: 200 kHz, Duration: 400 ms

Step 1:
The above figure actually shows the overall frequency response of the setup. It mainly reflects the fact that VT DSO-2A20E’s anti-aliasing filter has a cutoff frequency at $0.443 \times \text{[Sampling Frequency]} = 0.443 \times 50 \text{ kHz} = 22.15 \text{ kHz}$ under its 16-bit mode. The small undulation at the lower frequency end is due to the fact that octave bands have a much higher resolution at lower frequencies and thus call for a longer record length in the oscilloscope. Note that there is no need to compensate the frequency response in this test.

Step 2:

The measured resonant frequency is 386 Hz at the impedance peak 10.3 Ω. The lowest impedance is 6.8 Ω at the lower frequency end.

All the above tests obtain similar results. Among them, the frequency logarithmically swept sine wave is the fastest method. Multitone stimuli should have converged faster if a record length of 1 or multiple seconds had been chosen.
The Panel Setting Files for Step 2 of the above Examples (4), (5) and (6) can be found in the software’s installation directory:

psf\VTDSO\Impedance_MultiTones_FFT32768_2810E.psf,
psf\VTDSO\Impedance_MultiTones_Octave24_2810E.psf,
psf\VTDSO\Impedance_LogSweptSine_Octave96_2810E.psf, respectively.

They can be directly used to measure an impedance in the order of 50Ω using VT DSO-2810E, 2820E, 2A10E, or 2A20E. General reference Vo files have already been provided for these settings and thus Step 1 can be omitted. However, it is recommended to perform Step 1 to re-calibrate the Reference Vo file for higher accuracy. If the reference Rr in [Spectrum Analyzer Processing]>[Y Scale] is changed to 600Ω instead, then the modified settings can be used to measure an impedance in the order of 600Ω using VT DSO-2810, 2820, 2A10, or 2A20. The Signal Generators of these DSOs have an output impedance of about 600Ω.

If a sound card is used as both the ADC and DAC devices for impedance measurement, the following Panel Setting Files corresponding to Step 1 of the above Examples (1), (2) and (3) can be used:

psf\Pro\Impedance_MultiTones_FFT65536_SoundCard.psf,
psf\Pro\Impedance_MultiTones_Octave24_SoundCard.psf,
psf\Pro\Impedance_LogSweptSine_Octave96_SoundCard.psf, respectively.

3.2.2 View Parameters for Phase Spectrum Display

Selecting Phase Spectrum in the above View Type selection box switches the Spectrum Analyzer to phase spectrum display mode which shows the frequency component’s phase vs frequency graph of the measured signal. Phase spectrum is normally used to compare or read out the phase difference between two channels rather than read out the absolute phase information of each channel.

The following figure illustrates the phase spectrum of two 1 kHz sine waves with a phase difference of 90 degrees. The cursor reader in the phase spectrum indicates a 90-degreee difference around 1 kHz.
3.2.2.1 Frequency Range (F)

Same as Amplitude Spectrum display.

3.2.2.2 Frequency Multiplier

Same as Amplitude Spectrum display.

3.2.2.3 Channel A Display Range

Five options available: Off, ± 180D (i.e. ± 180 degree), 135D, 90D, 45D.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.2.4 Channel A Multiplier
Same as Amplitude Spectrum display.

3.2.2.5 Channel B Display Range

<table>
<thead>
<tr>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
</tr>
<tr>
<td>± 180D</td>
</tr>
<tr>
<td>± 135D</td>
</tr>
<tr>
<td>± 90D</td>
</tr>
<tr>
<td>± 45D</td>
</tr>
</tbody>
</table>

Five options available: Off, ± 180D (i.e. ± 180 degree), 135D, 90D, 45D.

When "Off" is selected, the data in Channel B will not be displayed.

3.2.2.6 Channel B Multiplier

Same as Amplitude Spectrum display.

3.2.2.7 FFT Size

Same as Amplitude Spectrum display.

3.2.2.8 Window Function

Same as Amplitude Spectrum display.

3.2.2.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.2.3 View Parameters for Auto Correlation Function Display

Selecting Auto Correlation in the above View Type selection box switches the Spectrum Analyzer to auto correlation display mode which shows the auto correlation coefficient vs time delay graph of the measured signal. The auto correlation function here is acyclic or linear. It is symmetric and always has the highest auto correlation coefficient (=1) at [Time Delay]=0. Therefore, there is no point for the software to show this peak. Instead, the time delay and auto correlation coefficient of the second peak is shown. They can also be accessed through these Derived Data Points (DDPs): SecondPeakACFTimeDelay_A(s) and SecondPeakACFCoeff_A for Channel A, and SecondPeakACFTimeDelay_B(s) and SecondPeakACFCoeff_B for Channel B.
The following figure illustrates the auto correlation function of a 1 kHz sine wave. It shows that the time interval between correlation function peaks is 1 ms, which is equal to the period of the signal. The second peak is located at [Time Delay]=1 ms with a coefficient of about 0.9.

3.2.3.1 Time Delay Range (dT)
This parameter is applicable to Auto or Cross Correlation Function Display. 49 options are available: Auto, ±1 ns, ±2 ns, ±4 ns, ±5 ns, ±10 ns, ±20 ns, ±40 ns, ±50 ns, ±100 ns, ±200 ns, ±400 ns, ±500 ns, ±1 µs, ±2 µs, ±4 µs, ±5 µs, ±10 µs, ±20 µs, ±40 µs, ±50 µs, ±100 µs, ±200 µs, ±400 µs, ±500 µs, ±1 ms, ±2 ms, ±4 ms, ±5 ms, ±10 ms, ±20 ms, ±40 ms, ±50 ms, ±100 ms, ±200 ms, ±400 ms, ±500 ms, ±1 s, ±2 s, ±4 s, ±5 s, ±10 s, ±20 s, ±40 s, ±50 s, ±100 s, ±200 s, ±400 s, ±500 s.

When “Auto” is selected, the Time Delay Range will be set by the software automatically based on the following formula:

Time Delay Range = the nearest integer that is equal to or greater than the value of
0.5 × [FFT Size] / [Sampling Frequency]
Auto correlation and cross correlation function is calculated using FFT in order to achieve fast speed. The computable range for the Time Delay for a frame of data is thus $\pm 0.5 \times \frac{\text{FFT size}}{\text{Sampling Frequency}}$.

3.2.3.2 *Time Delay Multiplier*

Same as Amplitude Spectrum display.

3.2.3.3 *Channel A Display Range*

Only two options available: Off, ± 1.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.3.4 *Channel A Multiplier*

Same as Amplitude Spectrum display.

3.2.3.5 *Channel B Display Range*

Only two options available: Off, ± 1.

When "Off" is selected, the data in Channel B will not be displayed.

3.2.3.6 *Channel B Multiplier*

Same as Amplitude Spectrum display.

3.2.3.7 *FFT Size*

Same as Amplitude Spectrum display.

3.2.3.8 *Window Function*

Disabled.
3.2.3.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.2.4 View Parameters for Cross Correlation Function Display

Selecting Cross Correlation in the above View Type selection box switches the Spectrum Analyzer to cross correlation display mode which shows the cross correlation coefficient between Channels A and B vs time delay graph. The cross correlation function here is acyclic or linear. The time delay and cross correlation coefficient of the peak is shown. They can also be accessed through these Derived Data Points (DDPs): PeakCCFTimeDelay_AB(s) and PeakCCFCoeff_AB.

The following figure illustrates the cross correlation function of two 1 kHz sine wave signals, with the one in Channel A being 90 degrees ahead of the one in Channel B in phase. It shows that the cross correlation function peak is at 0.25 ms, which means that the signal in Channel A is 0.25 ms (i.e. 1/4 period) ahead of the signal in Channel B.

3.2.4.1 Time Delay Range (dT)

Same as Auto Correlation Function display.
3.2.4.2 Time Delay Multiplier

Same as Auto Correlation Function display.

3.2.4.3 Channel A&B Display Range

Same as Channel A Display Range in Auto Correlation Function display.

3.2.4.4 Channel A&B Multiplier

Same as Channel A Multiplier in Amplitude Spectrum display.

3.2.4.5 Channel B Display Range

Not applicable and disabled.

3.2.4.6 Channel B Multiplier

Not applicable and disabled.

3.2.4.7 FFT Size

Same as Amplitude Spectrum display.

3.2.4.8 Window Function

Disabled.

3.2.4.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.2.5 View Parameters for Coherence / Non-Coherence Function Display

Selecting Coherence Function in the above View Type selection box switches the Spectrum Analyzer to coherence function display mode which shows the coherence coefficient between Channels A and B vs frequency graph. The coherence function is defined as the square root of the ratio of the cross-power spectrum between the input and output to the product of their auto-power spectra. It can be used to examine the
relationship between two signals. It is commonly used to estimate the power transfer between input and output of a linear system. If the signals are ergodic, and the system function is linear, it can be used to estimate the causality between the input and output. Thus the coherence function is usually used to examine the quality of a measured transfer function. The peak coherence coefficient and its corresponding frequency will be shown on the top of the graph. They can also be accessed through these Derived Data Points (DDPs): PeakCHFCoeff_AB and PeakCHFFreq_AB(Hz).

The following figure illustrates the coherence function of two independent white noise signals. It shows that the coherence value at each frequency is well below 1 after 42 times of intra-frame averaging (Number of data points in time domain: 44100, FFT size: 1024, number of FFT segments: 44100/1024 = 43). The values should converge to zero at all frequencies if an infinite number of intra-frame averaging is performed. Note that if there is only one FFT segment (i.e. no intra-frame averaging), the coherence values will always be 1 even if the two signals are fully independent and un-correlated. Thus, to get a valid coherence function, at least one time of intra-frame averaging must be performed. In other words, the Record Length of the Oscilloscope must be at least twice the FFT size of the Spectrum Analyzer.

The following figure illustrates the coherence function of a white noise stimulus (in Channel B) and the corresponding response (in Channel A) from a 5513 Hz second order Butterworth low pass filter. The figure shows that the coherence value maintains at nearly 1 from 0 Hz to about 15 kHz and then starts to drop towards zero quickly. The reason why the high frequencies tend to be un-correlated is because their energy in the response signal is greatly suppressed by the low pass filter resulting in a very poor signal-to-noise ratio at these frequencies.
The coherence function is often used in conjunction with the transfer function as an indication of the quality of the transfer function measurement and indicates how much of the response energy is correlated to the stimulus energy.

3.2.5.1 Frequency Range (F)

Same as Amplitude Spectrum display.

3.2.5.2 Frequency Multiplier

Same as Amplitude Spectrum display.

3.2.5.3 Channel A&B Display Range

Only two options available: Off, 1.

When "Off" is selected, the data in Channel A will not be displayed.
3.2.5.4 Channel A&B Multiplier

Same as Channel A Multiplier in Amplitude Spectrum display.

3.2.5.5 Channel B Display Range

Not applicable and disabled.

3.2.5.6 Channel B Multiplier

Not applicable and disabled.

3.2.5.7 FFT Size

Same as Amplitude Spectrum display.

3.2.5.8 Window Function

Same as Amplitude Spectrum display.

3.2.5.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.2.5.10 Non-Coherence Function and Total Non-Coherent Distortion and Noise

The coherence function can be seen as the square root of the ratio of the coherent output power to the output power against frequency. Coherent output power is the part of output power which is linearly related to the input. The remainder of the output power is called non-coherent output power, which is caused by all kinds of non-linear distortions (e.g. THD, IMD, etc..) and noise. The non-coherence function is thus defined as the square root of the ratio of the non-coherent output power to the output power against frequency. It equals to the square root of (1-[Coherent Function]²). To switch to non-coherence function display mode, right click anywhere within the Spectrum Analyzer window and select [Spectrum Analyzer Processing] in the pop-up menu, then tick “Non Coherence” checkbox.

Non-Coherence function can be used to indicate the variation of the non-coherent distortion and noise with frequency. The non-coherent distortion takes into account all kinds of non-linear distortions. Integrating the non-coherent output power against frequency gives the total non-coherent output power. Total Non-Coherent Distortion and noise (TNCD) is a single value defined as the square root of the ratio of the total non-coherent output power to the total output power. It is displayed in percentage (%). This value will be shown on the top of the non-coherence coefficient vs frequency graph. It can also be accessed through the Derived Data Point (DDP): TNCD_AB(%).
It is possible to specify a frequency range in which the TNCD is calculated. The default range is from 20 Hz to 20 kHz.

The following figure illustrates the non-coherence function of two independent white noise signals. It shows that the non-coherence coefficient at each frequency approaches 1 after 687 times of intra-frame averaging (Number of data points in time domain: 44100, FFT size: 128, window overlap: 50%, number of FFT segments: 688). The values should converge to 1 at all frequencies and the TNCD should be 100% if an infinite number of intra-frame averaging is performed. Note that if there is only one FFT segment (i.e. no intra-frame averaging), the non-coherence coefficients will always be zero even if the two signals are fully independent and un-correlated. Thus, to get a valid non-coherence function, at least one time of intra-frame averaging must be performed. In other words, the Record Length of the Oscilloscope must be at least twice the FFT size of the Spectrum Analyzer. However, if the non-coherence function and TNCD are used to quantify the non-coherent distortion + noise, then a much greater number of intra-frame averaging should be used, in order to minimize its artifact on the measurement accuracy and allow a small value of non-coherent distortion + noise to show up. This requires a longer record length of the Oscilloscope.

Unlike those traditional non-linear distortion measurements, such as e.g. THD and IMD, whereby a single tone, dual-tone, or multi-tone stimulus are used as the input signal, non-coherent distortion measurement can use any broad-band stimulus such as white noise, pink noise, multitones, broadband music, or broadband speech.

For Coherence and Non-Coherence Function measurement using the software, Channel B must be fed with the same stimulus sent to the Device Under Test (DUT)
and Channel A must be fed with the response from the DUT (see figure in the next section).

3.2.6 View Parameters for Transfer Function Display / Impedance Analyzer

Selecting Transfer Function in the above View Type selection box switches the Spectrum Analyzer to transfer function display mode under which the system’s gain & phase shift vs frequency graph are shown. Transfer function is a convenient representation of a Linear Time Invariant (LTI) dynamic system. It describes the relationship between the system’s input and output. Frequency response is a transfer function expressed in frequency domain. It is a measure of magnitude and phase of the output as a function of frequency, in comparison to the input. Frequency response includes magnitude frequency response and phase frequency response. A graph that shows both are called Bode plot or gain and phase plot.

For Transfer Function measurement using the software, Channel B must be fed with the same stimulus sent to the Device Under Test (DUT) and Channel A must be fed with the response from the DUT (see figure below). To achieve good measurement accuracy, significant stimulus energy must be present in the frequency range of interest. Commonly used signals are chirp signal and white noise as well as multitones capable of simultaneously stimulating all FFT frequency bands within the frequency range of interest. Transfer function measurement requires that the two input channels themselves have the same frequency response in the frequency range of interest. This can be verified by feeding the stimulus to both input channels directly and measuring the transfer function. The measured gain and phase shift in the frequency range of interest should be very close to 0 dB and 0°. If not, you can generate a gain and phase compensation file and load it to compensate the disparity between the two input channels. This will be described later in this chapter.

The following figure illustrates the transfer function of the aforementioned 5513 Hz second order Butterworth low pass filter, measured using a white noise stimulus, with the stimulus data stored in Channel B and the response data stored in Channel A. It shows that the gain maintains at nearly 0 dB from 0 Hz to about 5513 Hz, and then start to drop very quickly, meanwhile the phase changes gradually from 0 degree at 0 Hz towards –180 degree as the frequency goes to infinity. The cursor reader indicates that at 5512.7 Hz (i.e. around the cutoff frequency), the gain is about –3.13 dB and the phase is about -89.1 degree.

As indicated in the previous section, the coherence function of this measurement drops very quickly towards zero after 15 kHz, thus the transfer function results
beyond 15 kHz may not be trustable because the response and stimulus are no more closely correlated due to the poor signal-to-noise ratio.

The following figure shows a first order RC low pass filter. The resistor R is 200Ω and the capacitor C is 2.2µF. Its cutoff frequency can be calculated as: 1/(2πRC)=362Hz. Its transfer function was measured using a sound card. The stimulus was white noise. 143 frames were averaged. The measured bode plot is show as follows. The measured cutoff frequency is about 360Hz and the measured phase shift changes from 0° to -90° as frequency increases.
The following DDPs are generated by transfer function display mode:

1. PeakGainFreq_AB(Hz): Frequency at the peak gain
2. PeakGainValue_AB(dB): Peak gain
3. PeakGainPhase_AB(D): Phase at the peak gain
4. GainAtGeneratedFreq(dB): Gain at the frequency generated by Channel A of the Signal Generator
5. PhaseAtGeneratedFreq(D): Phase at the frequency generated by Channel A of the Signal Generator
6. InBandMinF_A(Hz): Frequency at which the minimum gain is located in the specified frequency band
7. InBandMinRMS_A(EU): Minimum gain in the specified frequency band, its unit will be updated to dB
8. InBandMaxF_A(Hz): Frequency at which the maximum gain is located in the specified frequency band
9. InBandMaxRMS_A(EU): Maximum gain in the specified frequency band, its unit will be updated to dB
10. InBandMinF_B(Hz): Frequency at which the minimum gain is located in the specified frequency band
11. InBandMinRMS_B(EU): Phase at the minimum gain in the specified frequency band, its unit will be updated to D
12. InBandMaxF_B(Hz): Frequency at which the maximum gain is located in the specified frequency band
13. InBandMaxRMS_B(EU): Phase at the maximum gain in the specified frequency band, its unit will be updated to D

The above (1), (2) and (3) are also displayed in the upper part of the Spectrum Analyzer. (4) and (5) are usually used in transfer function measurements using frequency stepped sine stimulation through Device Test Plan.
If the signals acquired in the two input channels are not time aligned, and it is required to remove the time delay between them before the transfer function is calculated, then please refer to the Time Delay Removal method introduced in the previous chapters.

3.2.6.1 Frequency Range (F)

Same as Amplitude Spectrum display.

3.2.6.2 Frequency Multiplier

Same as Amplitude Spectrum display.

3.2.6.3 Channel A Display Range

![Channel A Display Range Table](image)

Five options available: Off, ±50dB, ±100dB, ±150dB, ±200dB.

When "Off" is selected, the data in Channel A will not be displayed.

3.2.6.4 Channel A Multiplier

Same as Amplitude Spectrum display.

3.2.6.5 Channel B Display Range

![Channel B Display Range Table](image)

Five options available: Off, ±180D (i.e. ±180 degree), 135D, 90D, 45D.

When "Off" is selected, the data in Channel B will not be displayed.

3.2.6.6 Channel B Multiplier
Same as Amplitude Spectrum display.

3.2.6.7 FFT Size

Same as Amplitude Spectrum display.

3.2.6.8 Window Function

Same as Amplitude Spectrum display.

3.2.6.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.2.6.10 Impedance Analyzer Mode

Under the Transfer Function display mode, to switch to Impedance Analyzer mode, right click anywhere within the Spectrum Analyzer window and select [Spectrum Analyzer Y Scale] in the pop-up menu, then tick “Convert to Impedance” checkbox (see figure below).
Impedance is a two-dimensional vector quantity consisting of two independent scalars: resistance and reactance. It is represented as a complex quantity Z. In polar form, the impedance is represented by its magnitude and phase angle, both of which are a function of frequency. The impedance magnitude and phase vs frequency plot is thus quite similar to the gain and phase vs frequency plot of a LTI system. So does the measurement method. Two connection methods are supported in the software (see figure below).
where Z_x is the impedance to be measured, R_r the reference resistor, V_o the output voltage from the signal generator and V_i the input voltage fed by the voltage divider formed by Z_x and R_r. Both V_o and V_i are ground referenced, so measuring devices with either ground referenced inputs or differential inputs can be used. The input impedance of the measuring device must be much higher than that of Z_x and R_r so that their effect on the measurement accuracy can be ignored. The output impedance and overall frequency response of the measuring device do not affect the measurement accuracy directly thanks to the dual-channel measurement method, but it is still recommended for the measuring device to have a low output impedance and a flat overall frequency response. The dual-channel measurement method requires the two input channels to have minimum gain and phase differences within the frequency range of interest. Unlike the transfer function measurement, these differences cannot be compensated in the software.

R_r is an external reference resistor. You need to find the resistor and make the connection by yourself. It is recommended to have R_r’s value comparable to that of Z_x. The actual value of R_r should be entered into the $R_r(\Omega)$ edit box in [Spectrum Analyzer Y Scale] dialog box. The actual connection used also needs to be selected there. Unlike the single-channel impedance measurement method under Amplitude Spectrum display mode, the dual-channel method does not require a Reference Vo file as V_o is already measured simultaneously with V_i. In Connection 1, $Z_x = R_r \times (V_o - V_i) / V_i$ while in Connection 2, $Z_x = R_r \times V_i / (V_o - V_i)$. To achieve good measurement accuracy, significant stimulus energy must be present in the frequency range of interest. Commonly used signals are chirp signal (frequency swept sine) and white noise as well as multitones capable of simultaneously stimulating all FFT frequency bands in the frequency range of interest. Various average methods can be used to smoothen the result.

Under the Impedance Analyzer mode, Channel A Display Range will be updated to display impedance in Ω. The “Auto” option of the display range is about 5 times of R_r. The following DDPs are generated by Impedance Analyzer mode:

(1) PeakGainFreq_AB(Hz): Frequency at the peak impedance
(2) PeakGainValue_AB(dB): Peak impedance value, its unit will be updated to Ω
(3) PeakGainPhase_AB(D): Phase at the peak impedance
(4) GainAtGeneratedFreq(dB): Impedance at the frequency generated by Channel A of the Signal Generator, its unit will be updated to Ω
(5) PhaseAtGeneratedFreq(D): Phase at the frequency generated by Channel A of the Signal Generator
(6) InBandMinF_A(Hz): Frequency at which the minimum impedance is located in the specified frequency band
(7) InBandMinRMS_A(EU): Minimum impedance in the specified frequency band
(8) InBandMaxF_A(Hz): Frequency at which the maximum impedance is located in the specified frequency band
(9) InBandMaxRMS_A(EU): Maximum impedance in the specified frequency band
(10) InBandMinF_B(Hz): Frequency at which the minimum impedance is located in the specified frequency band
(11) InBandMinRMS_B(EU): Phase at the minimum impedance in the specified frequency band, its unit will be updated to D
(12) InBandMaxF_B(Hz): Frequency at which the maximum impedance is located in the specified frequency band

(13) InBandMaxRMS_B(EU): Phase at the maximum impedance in the specified frequency band, its unit will be updated to D

The above (1), (2) and (3) are also displayed in the upper part of the Spectrum Analyzer. (4) and (5) are usually used in impedance measurements using frequency stepped sine stimulation through Device Test Plan.

The following examples use different stimuli and configurations to measure a 2.5” 8Ω speaker’s impedance with a 25Ω reference resistor.

(1) White Noise

Oscilloscope:
ADC Device: VT DSO-2A20E, Bit Resolution: 16
Sampling Frequency: 50 kHz, Record Length: 200 ms (10000 samples)
Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
FFT size: 32768, Window Function: Rectangle
Intra-Frame Processing: Smooth via Moving Average: 10 points
Inter-Frame Processing: 200-frame linear average
X Scale: Log, Y Scale: Convert to Impedance
Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
DAC Device: Sound Card Headphone Output, Duration: Loop
Waveform: White Noise, Sampling Frequency: 48 kHz

The measured resonant frequency is 394 Hz at the impedance peak 10.5 Ω. The lowest impedance is 6.8 Ω at the lower frequency end. The phases at the resonant
frequency and low frequency end are 1.1 degree and 0.1 degree respectively, which are very close to zero.

(2) Pink Noise

Oscilloscope:
ADC Device: VT DSO-2A20E, Bit Resolution: 16
Sampling Frequency: 50 kHz, Record Length: 200 ms (10000 samples)
Trigger Mode: Normal, Trigger Level: 0%

Spectrum Analyzer:
FFT size: 32768, Window Function: Rectangle
Intra-Frame Processing: Smooth via Moving Average: 10 points
Inter-Frame Processing: 200-frame linear average
X Scale: Log, Y Scale: Convert to Impedance
Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
DAC Device: Sound Card Headphone Output, Duration: Loop
Waveform: Pink Noise, Sampling Frequency: 48 kHz

The measured resonant frequency is 392 Hz with an impedance peak of 10.8 Ω. The lowest impedance is 7.0 Ω at the lower frequency end. The phases at the resonant frequency and low frequency end are 2.3 degree and 1.0 degree respectively, which are very close to zero.

(3) Frequency linearly swept sine wave

Oscilloscope:
ADC Device: VT DSO-2A20E, Bit Resolution: 16
Sampling Frequency: 50 kHz, Record Length: 200 ms (10000 samples)
Trigger Mode: Single, Trigger Level: 1%

Spectrum Analyzer:
- FFT size: 32768, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: None
- Inter-Frame Processing: None
- X Scale: Log, Y Scale: Convert to Impedance
- Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
- Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
- DAC Device: Sound Card Headphone Output, Duration: 200 ms
- Waveform: Frequency linearly swept sine wave from 10 Hz to 21 kHz
- Sampling Frequency: 48 kHz

The measured resonant frequency is 394 Hz with an impedance peak of 10.7 Ω. The lowest impedance is 7.0 Ω at the lower frequency end. The phases at the resonant frequency and low frequency end are -0.5 degree and 0.5 degree respectively, which are very close to zero.

(4) Frequency logarithmically swept sine wave

Oscilloscope:
- ADC Device: VT DSO-2A20E, Bit Resolution: 16
- Sampling Frequency: 50 kHz, Record Length: 200 ms (10000 samples)
- Trigger Mode: Single, Trigger Level: 1%

Spectrum Analyzer:
- FFT size: 32768, Window Function: Rectangle
- Intra-Frame Processing: Smooth via Moving Average: 10 points
- Inter-Frame Processing: None
- X Scale: Log, Y Scale: Convert to Impedance
Max. and Min. Impedance Searching Range: 20 Hz ~ 5 kHz
Frequency Range of Interest: 20 Hz ~ 20 kHz

Signal Generator:
DAC Device: Sound Card Headphone Output, Duration: 200 ms
Waveform: Frequency logarithmically swept sine wave from 10 Hz to 21 kHz
Sampling Frequency: 48 kHz

The measured resonant frequency is 391 Hz with an impedance peak of 10.6 Ω. The lowest impedance is 6.9 Ω at the lower frequency end. The phases at the resonant frequency and low frequency end are 0.7 degree and 1.5 degree respectively, which are very close to zero.

All the above tests obtain similar results. Among them, the frequency swept sine wave, either linearly or logarithmically, is the fastest method. If a longer record length is chosen, the frequency resolution of the results would be finer.

3.2.7 View Parameters for Impulse Response Display

Selecting Impulse Response in the above View Type selection box switches the Spectrum Analyzer to impulse response display mode under which the impulse response graph is shown. The Fourier Transform of the Impulse Response of a system is precisely the Frequency Response of the system. The impulse response here is computed from the frequency response measured in the previous section through inverse FFT.

For Impulse Response measurement using the software, Channel B must be fed with the stimulus sent to the Device Under Test (DUT) and Channel A must be fed with the response from the DUT. To achieve good measurement accuracy, significant
stimulus energy must be present in the frequency range of interest. Two commonly used signals are chirp signal (swept sine) and white noise.

The following figure illustrates the impulse response of the aforementioned 5513 Hz second order Butterworth low pass filter.

The following DDPs are generated by impulse response display mode:

(1) PeakIPRTime_AB(s): Time at the peak of the Impulse Response
(2) PeakIPRValue_AB: Peak Impulse Response Value

These values are also displayed in the upper part of the Spectrum Analyzer.

3.2.7.1 Time Range (T)
49 options are available: Auto, 1 ns, 2 ns, 4 ns, 5 ns, 10 ns, 20 ns, 40 ns, 50 ns, 100 ns, 200 ns, 400 ns, 500 ns, 1 µs, 2 µs, 4 µs, 5 µs, 10 µs, 20 µs, 40 µs, 50 µs, 100 µs, 200 µs, 400 µs, 500 µs, 1 ms, 2 ms, 4 ms, 5 ms, 10 ms, 20 ms, 40 ms, 50 ms, 100 ms, 200 ms, 400 ms, 500 ms, 1 s, 2 s, 4 s, 5 s, 10 s, 20 s, 40 s, 50 s, 100 s, 200 s, 400 s, 500 s.

When “Auto” is selected, the Time Range will be set by the software automatically based on the following formula:

\[
\text{Time Range} = \text{the nearest integer that is equal to or greater than the value of } \frac{\text{[FFT Size]}}{\text{[Sampling Frequency]}}
\]

Impulse response is obtained by converting the frequency response (i.e. Transfer Function) from frequency domain to time domain using inverse FFT. The time range is thus \(\frac{\text{[FFT size]}}{[\text{Sampling Frequency}]}\).
3.2.7.2 Time Multiplier

Same as Amplitude Spectrum display.

3.2.7.3 Channel A Display Range

19 options available: Off, \(\pm 1n\), \(\pm 10n\), \(\pm 100n\), \(\pm 1\mu\), \(\pm 10\mu\), \(\pm 100\mu\), \(\pm 1m\), \(\pm 10m\), \(\pm 100m\), \(\pm 1\), \(\pm 10\), \(\pm 100\), \(\pm 1k\), \(\pm 10k\), \(\pm 100k\), \(\pm 1M\), \(\pm 10M\), \(\pm 100M\).

When "Off" is selected, the data in Channel A will not be displayed.

3.2.7.4 Channel A Multiplier

Same as Amplitude Spectrum display.

3.2.7.5 Channel B Display Range

Not applicable and disabled.

3.2.7.6 Channel B Multiplier

Not applicable and disabled.

3.2.7.7 FFT Size
Same as Amplitude Spectrum display.

3.2.7.8 Window Function

Same as Amplitude Spectrum display.

3.2.7.9 Window Overlap Percentage

Same as Amplitude Spectrum display.

3.3 Menu

Spectrum Analyzer has its own menu bar and additional functions can be accessed through the menu items in each submenu. Click anywhere within the Spectrum Analyzer window will switch the software’s main menu to the Spectrum Analyzer menu.

3.3.1 File SubMenu

<table>
<thead>
<tr>
<th>File</th>
<th>Setting</th>
<th>Instrument</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td>Ctrl-N</td>
</tr>
<tr>
<td>Open...</td>
<td></td>
<td></td>
<td></td>
<td>Ctrl-O</td>
</tr>
<tr>
<td>OpenFrame by Frame...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td></td>
<td></td>
<td>Ctrl-S</td>
</tr>
<tr>
<td>Save As...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum Analyzer Export...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum Analyzer Print...</td>
<td></td>
<td></td>
<td></td>
<td>Ctrl-P</td>
</tr>
<tr>
<td>Spectrum Analyzer Print Preview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Kaiser36_24Bit_1024Pt.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Rectangle_24Bit_1024Pt.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Kaiser36_24Bit_1024Pt.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 BlackmanHarris_24Bit_1024Pt.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This submenu provides access to the file operation and printing functions.

3.3.1.1 New (File SubMenu) (ALT-F-N, CTRL-N)

The command is used to create a new, blank document for measurement. The new document will be used to hold the latest collected frame of data.
This command is also available through the button \[\text{in the Instrument Toolbar.}
When no Oscilloscope and Spectrum Analyzer is opened, click the above "Spectrum Analyzer" button will open a new document.

3.3.1.2 Open (File SubMenu) (ALT-F-O, CTRL-O)

Same as Oscilloscope.

3.3.1.3 Open Frame by Frame (File SubMenu) (ALT-F-F)

Same as Oscilloscope.

3.3.1.4 Import (File SubMenu) (ALT-F-I)

Same as Oscilloscope.

3.3.1.5 Combine (File SubMenu) (ALT-F-B)

Same as Oscilloscope.

3.3.1.6 Extract (File SubMenu) (ALT-F-T)

Same as Oscilloscope.

3.3.1.7 Close (File SubMenu) (ALT-F-C)

Same as Oscilloscope.

3.3.1.8 Save (File SubMenu) (ALT-F-S, CTRL-S)

Same as Oscilloscope.

3.3.1.9 Save As (File SubMenu) (ALT-F-A)

Same as Oscilloscope.

3.3.1.10 Spectrum Analyzer Export (File SubMenu) (ALT-F-E)

This command is used to export either the calculated data (RMS Amplitude Spectrum, Octave Spectrum, Phase Spectrum, Auto Correlation Function or Cross Correlation Function, Coherence Function, Transfer Function, Impulse Response, depending on the current view type) as a TXT file or the currently displayed graph as a BMP file.
When clicked, a "Save As" window will pop up. You can specify whether you want to export as TXT file or BMP file by selecting "Text File (*.txt)" or "Bitmap File (*.bmp)" in the "Save as type" combo box. The text file can be imported into third party software such as Microsoft Excel for further processing and analysis.

This command is disabled when the document is empty.

3.3.1.11 Spectrum Analyzer Print (File SubMenu) (ALT-F-P, CTRL-P)

Similar to Oscilloscope.

3.3.1.12 Spectrum Analyzer Print Preview (File SubMenu) (ALT-F-V)

Similar to Oscilloscope.

3.3.1.13 Recent File (File SubMenu)

Same as Oscilloscope.

3.3.2 Setting SubMenu

<table>
<thead>
<tr>
<th>Setting</th>
<th>Instrument</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restore to Factory Default...</td>
<td>ADC Device...</td>
<td>DAC Device...</td>
<td>Calibration...</td>
</tr>
<tr>
<td></td>
<td>Display...</td>
<td>Notes...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADC Device Database...</td>
<td>DAC Device Database...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectrum Analyzer Processing...</td>
<td>Spectrum Analyzer X Scale...</td>
<td>Spectrum Analyzer Y Scale...</td>
</tr>
<tr>
<td></td>
<td>Spectrum Analyzer Chart Options...</td>
<td>Spectrum Analyzer Reference...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Save Current Panel Setting as Default</td>
<td>Save Current Panel Setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load Panel Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configure Hot Panel Setting Toolbar...</td>
<td>Show Hot Panel Setting Toolbar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change Password...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This submenu provides access to various setting functions.
3.3.2.0 Restore to Factory Default (Setting SubMenu) (ALT-S-U)

Same as Oscilloscope.

3.3.2.1 ADC Device (Setting SubMenu) (ALT-S-A)

Same as Oscilloscope.

3.3.2.2 DAC Device (Setting SubMenu) (ALT-S-E)

Same as Oscilloscope.

3.3.2.3 Calibration (Setting SubMenu) (ALT-S-C)

Same as Oscilloscope.

3.3.2.4 Display (Setting SubMenu) (ALT-S-D)

Same as Oscilloscope.

3.3.2.5 Note (Setting SubMenu) (ALT-S-N)

Same as Oscilloscope.

3.3.2.6 ADC Device Database (Setting SubMenu) (ALT-S-B)

Same as Oscilloscope.

3.3.2.7 DAC Device Database (Setting SubMenu) (ALT-S-T)

Same as Oscilloscope.

3.3.2.8 Spectrum Analyzer Processing (Setting SubMenu) (ALT-S-G)
After being processed in time domain in the Oscilloscope, the signal will undergo the following processes in frequency domain sequentially:

1. Intra-frame processing
2. Inter-frame processing
3. Parameter Measurement

The data frame here is the same as that in the Oscilloscope. A data frame can be further divided into one or multiple FFT segments depending on the ratio of Record Length in the Oscilloscope and FFT Size in the Spectrum Analyzer.

3.3.2.8.1 Intra-Frame Processing

The Intra-Frame Processing, as its name suggests, is performed within a data frame in frequency domain. There are four types of Intra-Frame Processing: Remove DC, Frequency Compensation, Frequency Weighting, Smoothing via Moving Average. They are performed in sequence as above.
3.3.2.8.1.1 Remove DC

If this checkbox is ticked, the mean value of the current frame of data will be subtracted from the data before FFT computation.

Some of the sound cards may introduce a small background DC offset even though the sound card is AC coupled. This DC offset, if not compensated in time domain, will result in one or a few frequency peaks around 0 Hz and sometimes these peaks can be higher than those frequency peaks of interest. Leaving this checkbox ticked will remove the DC component present in the input signal during FFT. This checkbox is ticked by factory default.

3.3.2.8.1.2 Compensation

There are two types of compensation: frequency compensation under amplitude spectrum mode, and gain and phase compensation under transfer function mode.

3.3.2.8.1.2.1 Frequency Compensation

Under amplitude spectrum mode, if you check the “Compensation1” or “Compensation2” checkbox, you are allowed to load a Frequency Compensation File (*.fcf) to compensate the amplitude spectrum. You can specify up to two compensation files. For example, you can use one compensation file to compensate the magnitude frequency response of the measurement circuit, and use another compensation file to compensate the magnitude frequency response of the microphone.

A Frequency Compensation File is a Comma Separated Variable (CSV) TXT file that defines the magnitude compensation value (in dB) at each frequency. A mono frequency compensation file has the following format (which follows the same format as the Frequency Response File (*.frf) defined previously):

Example:

1,20,-50.5
2,25,-44.7
3,31.5,-39.4
4,40,-34.6
……

Each line contains three comma separated variables. The first variable is the sequential number. The second one is the frequency value in Hz. And the third one is the corresponding gain value in dB. Note that 0 dB represents the unit gain. Any frequency that falls outside the defined range will be given a gain value of –1000 dB. A stereo frequency compensation file has a fourth variable in each line, specifying the gain value in dB for the second channel. If the sampled data are stereo but the frequency compensation file is mono, then the same frequency compensation will be applied to both channels.
When the magnitude frequency response of a measuring device itself is obtained in the Spectrum Analyzer, the corresponding frequency compensation file can be generated by right clicking anywhere within the spectrum analyzer window and selecting “Generate Frequency Compensation File (Flat)”. The generated compensation file can be used to eliminate the effect of the non-flat magnitude frequency response of the measuring device itself on the measurement.

Some sample files are provided in the FCF directory of the software and can be used as templates. Frequency compensation is only applicable to the Amplitude Spectrum display.

3.3.2.8.1.2.2 Gain and Phase Compensation

Under transfer function mode, if you check the “Compensation1” or “Compensation2” checkbox, you are allowed to load a Gain and Phase Compensation file (*.gpc) to compensate the gain and phase plot. You can specify up to two compensation files.

A Gain and Phase Compensation file is a Comma Separated Variable (CSV) TXT file that defines the gain compensation value (in dB) and phase compensation value (in degree) at each frequency. It has the following format:

Example:

1,20,-50.5,0.49
2,25,-44.7,2.85
3,31.5,-39.4,4.54
4,40,-34.6,-0.38
……

Each line contains four comma separated variables. The first variable is the sequential number. The second one is the frequency value in Hz. The third one is the corresponding gain compensation value in dB, and the fourth one the corresponding phase compensation value in degree. Note that 0 dB represents the unit gain. Any frequency that falls outside the defined range will be given a gain compensation value of 0 dB and phase compensation value of 0 degree.

When the transfer function of a measuring device itself is obtained (usually by directly injecting the same test signal into both input channels) in the Spectrum Analyzer, the corresponding gain and phase compensation file can be generated by right clicking anywhere within the spectrum analyzer window and selecting “Generate Frequency Compensation File (Flat)”. The generated compensation file can be used to eliminate the effect of the gain and phase difference between the two input channels of the measuring device itself on the measurement.

Gain and phase compensation is only applicable to the transfer function display. Note that under the impedance measurement mode of the transfer function, these compensation files, if any, will be ignored.
3.3.2.8.1.3 Frequency Weighting

Four commonly used weighting profiles are supported: A, B, C and ITU-R 486. The following figure illustrates the four weighting curves obtained by analyzing white noise with the corresponding weighting profile. All curves cross at 1 kHz with a gain value of 0 dB.

Frequency weighting is only applicable to the Amplitude Spectrum display. It can be applied to Channel A, Channel B, or both of them. Different weighting options generate different DDPs. A, B, C weighting generates RMSDBA_A(dBA), RMSDBB_A(dBB) and RMSDBC_A(dBC) respectively for Channel A, and RMSDBA_B(dBA), RMSDBB_B(dBB) and RMSDBC_B(dBC) respectively for Channel B. These DDPs can be displayed in the respective display mode in the Multimeter.

3.3.2.8.1.4 Smoothing via Moving Average

If this option is ticked, moving average will be applied to the data in frequency domain to make the displayed curves smoother. The size of the moving average
window is adjustable. The bigger the moving average window, the smoother the displayed curves, the coarser the frequency resolution.

3.3.2.8.1.5 Parameter Measurements before Inter-Frame Processing

Some parameters are measured before inter-frame processing. Therefore, their values will not be affected by the inter-frame processing. These parameters include dBA, dBB and dBC in the Multimeter as well as the loudness and loudness level.

3.3.2.8.1.5.1 Sound Quality

It has long been known that the conventional acoustic metrics, such as A-weighted sound pressure level, don’t correlate well with perceptions of sound quality by end users. The term sound quality here refers to the overall experience of the information in the sound that leads to a person’s liking it or not, or that leads to a perception of the non-acoustical qualities of the device emitting the sound (that is, engine power, robust construction, etc.). There are a large number of metrics, some of which are well defined and others which are not. Very few have been standardized and the usefulness of a particular metric is dependent on the nature of the sound being tested. The following sections describe the sound quality parameters such a loudness, loudness level and sharpness, which can be measured by the software.

3.3.2.8.1.5.1.1 Loudness and Loudness Level

Sound loudness is a subjective term describing the strength of human ear's perception of a sound. Different standards exist for loudness calculation. ISO 532B (DIN45631) is used here. It is the most widely accepted standard for loudness calculation of a stationary sound. The calculation is based on 1/3 octave band levels of a sound. Options are provided to allow the user to specify the type of sound field: Free Field or Diffuse Field.

The unit of loudness is sone. The sone scale is linear. Doubling the perceived loudness doubles the sone value. A loudness of 1 sone is equivalent to the loudness of a signal at 40 phons, the loudness level of a 1 kHz tone at 40 dB SPL.

The unit of loudness level is phon. The phon scale is logarithmic. The number of phons of a sound is the dB SPL of a sound at a frequency of 1 kHz that sounds just as loud. The following figure shows the equal-loudness contours.
Loudness and loudness level are interconvertible. When the loudness is equal to or greater than 1 sone, \([\text{loudness level}] = 40 + 10 \times \log_2(\text{loudness})\). When the loudness is less than 1 sone, \([\text{loudness level}] = 40 \times (\text{loudness} + 0.0005)^{0.35}\). In the software, their values are accessible through the Derived Data Points (DDPs): Loudness_A(SONE) and LoudnessLevel_A(PHON) for Channel A, and Loudness_B(SONE) and LoudnessLevel_B(PHON) for Channel B. It should be noted that the loudness calculation is performed after “Remove DC” and Frequency Compensation but before Frequency Weighting. Therefore, their values will not be affected by the frequency weighting option.

For loudness calculation, FFT size should be set greater than 16384 (required by 1/3 octave analysis at a sampling frequency of 48 kHz) and normally Rectangle window function should be used for wide band noises.

3.3.2.8.1.5.1.2 Sharpness

Sharpness is a hearing sensation related to frequency and independent of loudness. Sharpness corresponds to the sensation of a sharp, painful, high-frequency sound and is the comparison of the amount of high frequency energy to the total energy. Sharpness delineates human sensation in a linear manner as well. In general, sharpness is increased by adding higher frequency content, and decreased by adding lower frequency content. The unit of sharpness is acum. Sharpness of one acum is produced by a narrow-band noise at 1 kHz with a bandwidth smaller than 150 Hz and a level of 60 dB.
Different standards exist for sharpness calculation but there is no international standard yet. DIN45692 is used here. It is calculated together with the loudness and loudness level introduced previously.

In the software, sharpness values are accessible through the Derived Data Points (DDPs): Sharpness_A(ACUM) for Channel A, and Sharpness_B(ACUM) for Channel B.

3.3.2.8.2 Inter-Frame Processing

There are four options: None, Peak Hold, Linear Average, Exponential Average. You can specify the number of contiguous frames to be processed. The available options are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 and forever. Note that when the Spectrum 3D Plot is running, the number of frames here must be less than or equal to the number of frames specified in Spectrum 3D Plot. When “Forever” is selected, you can reset the process using the Reset button when necessary.

3.3.2.8.2.1 Peak Hold

If Peak Hold is selected, the Spectrum Analyzer will keep track of each data frame acquired and only display the peak value (in terms of absolute value) at each frequency for the specified number of frames acquired most recently. The number of frames processed will be displayed at the bottom-right corner of the Spectrum Analyzer view.

You can utilize the peak hold function together with a swept sine signal generated via the Signal Generator to obtain the magnitude frequency response of a Device Under Test (DUT). This method requires the Record Length, FFT frequency resolution and
sweep duration to be carefully chosen. The finer the frequency resolution of the magnitude frequency response, the longer the sweep duration. The following figure illustrates the magnitude frequency response of a laptop built-in sound card measured using an external loopback cable. The sinusoidal signal was swept from 20 Hz to 22050 Hz for 300 seconds. The frame size of the Oscilloscope was 200 ms with a sampling rate of 44100 Hz. The Spectrum Analyzer was in the Peak Hold mode with 1024 FFT points. The figure shows that the magnitude frequency response was finally obtained by peak holding 813 frames of data. This panel setting can be found in the Panel Setting File (PSF) directory of the software.

3.3.2.8.2.2 Linear Average

If Linear Average is selected, the Spectrum Analyzer will keep track of each data frame acquired and only display the averaged value at each frequency for the specified number of frames acquired most recently. The number of frames processed will be displayed at the bottom-right corner of the Spectrum Analyzer view.

The following figure illustrates the magnitude frequency response of a laptop built-in sound card measured using an external loopback cable. White noise was used as the test signal. The frame size of the Oscilloscope was 2 s with a sampling rate of 44100 Hz. The Spectrum Analyzer was in the Averaging mode with 65536 FFT points. The result was obtained by averaging 50 frames of white noise. The more the averaged frames, the smoother the curve. This panel setting can be found in the Panel Setting File (PSF) directory of the software.
3.3.2.8.2.3 Exponential Average

Unlike Linear Average where all data frames used for average are given equal weights, in Exponential Average, the weighting factor for each data frame decreases with time exponentially, giving much more importance to recent observations while still not discarding older observations entirely. The degree of weighting decrease is expressed as a constant α in percentage. The greater the α, the faster the decrease. Alternatively, α may be expressed in terms of N, where $\alpha = 2/(N+1)$, and $N \times$ [time interval between the start times of two adjacent data frames] is called the time constant.

3.3.2.8.3 Parameter Measurement after Inter-frame Processing

Parameter Measurement is performed after the Intra-Frame and Inter-Frame processing. It is done only in the Amplitude Spectrum display. The following parameters can be measured.

3.3.2.8.3.1 THD, THD+N, SINAD, SNR, NL

If the option is ticked, THD, THD+N, SINAD, SNR, and NL values will be displayed in the upper portion of the Spectrum Analyzer view. These parameters are measured with reference to the single test tone frequency, which is detected automatically with sub-FFT-bin-size accuracy, in other words, its accuracy is much higher than the FFT frequency resolution.
THD (Total Harmonic Distortion) is defined here as the square root of the ratio of the sum of the powers of all harmonic frequencies above the fundamental frequency to the power of the fundamental. It is displayed in both percentage (%) and dB. It can be accessed through the Derived Data Points (DDPs): THD_A(%) and THDDB_A(dB) for Channel A, and THD_B(%) and THDDB_B(dB) for Channel B.

THD+N (Total Harmonic Distortion plus Noise) is defined here as the square root of the ratio of the sum of the powers of all harmonics frequencies above the fundamental frequency plus noise to the total power, in other words, the root square value of the ratio of the total power less the power of the fundamental frequency to the total power. It is displayed in both percentage (%) and dB. It can be accessed through the Derived Data Points (DDPs): THDN_A(%) and THDNDB_A(dB) for Channel A, and THDN_B(%) and THDNDB_B(dB) for Channel B.

SINAD (Signal in Noise and Distortion) is defined here as the ratio of the total power to the total power less the power of the fundamental frequency, converted to dB. It can be accessed through the Derived Data Points (DDPs): SINAD_A(dB) for Channel A and SINAD_B(dB) for Channel B.

SNR (Signal-to-Noise Ratio) is defined here as the ratio of the power of the fundamental frequency to the power of the noise, converted to dB. It can be accessed through the Derived Data Points (DDPs): SNR_A(dB) for Channel A and SNR_B(dB) for Channel B.

NL (Noise Level) is defined here as the square root of the noise power. The unit of the Noise Level depends on the Y scale chosen. Apart from the value display, the noise level will also be displayed as a dotted line in the Amplitude Spectrum. Note that the noise level will always appear higher than the “apparent” noise level because it represents the total power of all noises, not the noise power at a particular frequency bin. The “apparent” noise level varies with the FFT size. The bigger the FFT size, the smaller each FFT frequency bin, the less the noise power contained in each FFT frequency bin, thus the lower the “apparent” noise level. However, the real noise level will not go down because the total noise power will not change with the FFT size. It can be accessed through the Derived Data Points (DDPs): NoiseLevel_A(EU) for Channel A and NoiseLevel_B(EU) for Channel B.

ENOB (Effective Number of Bits) is defined here as: ENOB = (SINAD-1.76dB) / 6.02. It can be accessed through the Derived Data Points (DDPs): ENOB_A(Bit) for Channel A and ENOB_B(Bit) for Channel B.

The above parameters are automatically computed based on the peak frequency value detected in each frame of data. In order to achieve high measurement accuracy, the frequency of the test signal, the sampling frequency of the Oscilloscope, the Record Length and the FFT size must be carefully chosen such that a FFT segment contains exactly an integer number of cycles of the test signal, in order to avoid any artificial noise introduced due to the spectral leakage inherent in FFT algorithm. It is recommended to use the following formula to derive the frequency of the test signal: N × [Sampling Frequency]/[FFT Size], where N is an integer. For example, when the Sampling Frequency is 44100 Hz and the FFT size is 16384, and you want a test
signal of about 1 kHz, then the recommended test frequency would be 1001.293945 Hz (i.e. N=372) and the Record Length should be set to a value greater than the FFT size to avoid zero padding. The following table lists the recommended test frequencies for different sampling frequencies and FFT sizes. No window function is necessary if the recommended test frequency is used.

<table>
<thead>
<tr>
<th>FFT Size</th>
<th>Sampling Frequency</th>
<th>44100 Hz</th>
<th>48000 Hz</th>
<th>96000 Hz</th>
<th>192000 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td></td>
<td>990.5273438</td>
<td>984.375</td>
<td>1031.25</td>
<td>937.5</td>
</tr>
<tr>
<td>2048</td>
<td></td>
<td>990.5273438</td>
<td>1007.8125</td>
<td>984.375</td>
<td>1031.25</td>
</tr>
<tr>
<td>4096</td>
<td></td>
<td>1001.293945</td>
<td>996.09375</td>
<td>1007.8125</td>
<td>984.375</td>
</tr>
<tr>
<td>8192</td>
<td></td>
<td>1001.293945</td>
<td>1001.953125</td>
<td>984.375</td>
<td>1007.8125</td>
</tr>
<tr>
<td>16384</td>
<td></td>
<td>1001.293945</td>
<td>999.0234375</td>
<td>1001.953125</td>
<td>984.375</td>
</tr>
<tr>
<td>32768</td>
<td></td>
<td>999.9481201</td>
<td>1000.488281</td>
<td>999.0234375</td>
<td>1001.953125</td>
</tr>
<tr>
<td>65536</td>
<td></td>
<td>999.9481201</td>
<td>999.7558594</td>
<td>1000.488281</td>
<td>999.0234375</td>
</tr>
<tr>
<td>131072</td>
<td></td>
<td>999.9481201</td>
<td>1000.12207</td>
<td>999.7558594</td>
<td>1000.488281</td>
</tr>
<tr>
<td>262144</td>
<td></td>
<td>999.9481201</td>
<td>999.9389648</td>
<td>1000.12207</td>
<td>999.7558594</td>
</tr>
</tbody>
</table>

In many cases, however, it may not be practical to ensure a FFT segment contains exactly an integer number of cycles of the test signal (e.g. due to the round off error of the test frequency, discrepancy in ADC and DAC clock frequency…), thus a proper window must be used to suppress the spectrum leakage in those cases, otherwise very different and inaccurate results can be obtained. The software uses Kaiser 6 as the default window for the above parameter measurement.

Generally, if you use a sound card to generate the test signal and use the same sound card (i.e. share same ADC and DAC clock) to measure the above parameters, then you should use the above recommended test frequencies, FFT Size and Sampling Frequency. The Record Length should be set to a value equal to or greater than the FFT Size (i.e. no zero padding) and the Rectangle window function should be chosen in the Spectrum Analyzer. If the ADC and DAC do not share the same clock, Kaiser 6 window is then recommended.

To measure the above parameters, you must define a frequency band within which the total power of the signal (exclusive of the DC component), the power of the fundamental frequency, the total power of all the harmonic frequencies, and the total power of the noises are calculated. By default, the frequency band is set to 20 Hz ~20 kHz. Note that the upper limit of the frequency band must be equal to or lower than ½ of the Sampling Frequency. Otherwise, ½ of the Sampling Frequency will be used as the upper limit of the frequency band internally by the software. If you tick the harmonic order checkbox, you can further specify the maximum order of harmonics used for the calculation of the total power of the harmonic frequencies. That is, the power of a certain order of harmonic frequency will be taken into account only if it is within the frequency band specified, and it is equal to or lower than the harmonic order specified.

Some recommended panel settings for the above parameter measurement are provided in the Panel Setting File (PSF) directory of the software.

The following figure is the parameters of a laptop built-in sound card measured using an external loopback cable.
The following figure is the parameters of the same laptop built-in sound card measured via loopback at the sound card’s mixer level. As you can see that the SNR is about 13 dB better than the above case due to the fact that the current measurement excluded the contribution from the sound card’s power amplifier (output), the mic amplifier (input) as well as the possible external noises induced via the external loopback cable.
Some professional sound cards in the market have excellent performance in audio parameter related measurements. The following figure shows the loopback measurement result of an EMU Tracker Pre USB sound card. The measured THD is only 0.000351% and THD+N is only 0.001424%. Sound Card ASIO driver was used here to avoid the possible Sampling Rate Conversion (SRC) performed automatically by Sound Card MME driver which may introduce some additional distortions and noises.

A professional sound card together with the software is a very cost effective audio analyzer solution. When measuring the output of an audio power amplifier, the signal may need to be attenuated first using a linear attenuation circuit such as a simple...
voltage divider formed by two resistors. It should also be noted that the loopback performance of the measuring device should be better than the performance of the Device Under Test to ensure measurement quality. The loopback results of some sound cards can be found at:

- **EMU Tracker Pre Test Report using Multi-Instrument**
 Download link:

- **EMU 0204 Test Report using Multi-Instrument**
 Download link:

3.3.2.8.3.2 IMD

Intermodulation is the result of two or more signals of different frequencies being mixed together, forming additional signals at frequencies that are not in general, at harmonic frequencies (integer multiples) of either. Three types of Intermodulation Distortion (IMD) can be measured.

SMPTE/DIN IMD is the most common IMD measurement. SMPTE standard RP120-1983 and DIN standard 45403 are similar. Both specify a two-sinewave test signal consisting of a large amplitude low-frequency tone linearly mixed with a high-frequency tone at ¼ the amplitude of the low frequency tone. SMPTE specifies 60 Hz and 7 kHz mixed at 4:1. The DIN specification allows several choices in both frequencies, with 250 Hz and 8 kHz being the most common. The IMD under this category is defined here as the square root of the ratio of the power of the sidebands to the power of the upper frequency. It is displayed in both percentage (%) and dB. The sidebands used for this type of IMD calculation is \(f_{H}-f_{L} \), \(f_{H}+f_{L} \), \(f_{H}-2f_{L} \), \(f_{H}+2f_{L} \), where \(f_{H} \) and \(f_{L} \) are the high frequency and low frequency of the test signal respectively.

CCIF IMD, also called Twin-Tone or Difference-Tone IMD, is another common IMD measurement. The test specifies two equal-amplitude closely spaced high frequency signals. The IMD under this category is defined here as the square root of the ratio of the power of the intermodulation distortion products to the power of the two test frequencies. It is displayed in both percentage (%) and dB. It has two sub-types: CCIF2 IMD and CCIF3 IMD.

For **CCIF2 IMD**, the commonly used frequencies are: 19 kHz and 20 kHz. The intermodulation distortion products used for this type of IMD calculation is: \(f_{H}-f_{L} \), i.e. only the low-frequency second-order product is used.

For **CCIF3 IMD**, the commonly used frequencies are: 13 kHz and 14 kHz, 14 kHz and 15 kHz, or 15 kHz and 16 kHz. The intermodulation distortion products used for this type of IMD calculation is: \(f_{H}-f_{L} \), \(2f_{L}-f_{H} \), \(2f_{H}-f_{L} \), i.e. up to third-order products are used.

To conduct the above IMD tests, you can use the MultiTone generation function of the Signal Generator to generate the test signal. Some sample test tones for IMD
measurement are provided under the Tone Configuration File (TCF) directory of the software. It is also possible to use other signal generation source such as a CD as the software is able to detect the two test frequencies automatically.

Similar to the THD measurement, the IMD measurement is also very sensitive to spectral leakage. As there are two not-harmonically related main frequencies in the IMD tests, it is not possible to ensure each FFT segment contains integer numbers of cycles of both the frequencies. Therefore, window function must be used. The software uses the Kaiser 6 window by default for the IMD tests. Some recommended panel settings for different IMD measurements are provided in the Panel Setting File (PSF) directory of the software.

The following figure illustrates the SMPTE IMD of a laptop built-in sound card measured using an external loopback cable.

The following figure illustrates the DIN IMD of a laptop built-in sound card measured using an external loopback cable.
The following figure illustrates the CCI F2 IMD of a laptop built-in sound card measured using an external loopback cable.

The following figure illustrates the CCI F3 IMD of a laptop built-in sound card measured using an external loopback cable.

The following figure illustrates the CCI F3 IMD of a laptop built-in sound card measured using an external loopback cable.
Some professional sound cards in the market have excellent performance in audio parameter related measurements. The following figure illustrates the SMPTE IMD of an EMU Tracker Pre USB sound card measured using an external loopback cable.

In addition to the IMD values, the two test tone frequencies and their RMS values measured will also be displayed. The test tone frequencies here are measured with sub-FFT-bin-size accuracy. IMD can be accessed through the DDPs: IMD_A(%) and IMD_A(dB) for Channel A and IMD_B(%) and IMD_B(dB) for Channel B.
3.3.2.8.3.3 Bandwidth

Bandwidth (-3dB) is defined here as the difference between the upper and lower cutoff frequencies where the magnitude frequency response drops by –3 dB compared with the highest peak. To obtain accurate bandwidth measurement, the magnitude frequency response must be measured accurately with little fluctuation along the curve. You can use the “Smoothing via Moving Average” function to make the curve smoother. Alternatively, you can always use the cursor reader to obtain the bandwidth manually.

In most of the cases, the bandwidth and flatness of the magnitude frequency response of a system is of more interest than the absolute gain of the output over the input at different frequencies (i.e. the magnitude frequency response in Bode Plot). The former is easier to measure as it measures only the output signal and does not need to measure the input signal. There are quite a few ways to do it:

(1) White noise stimulation + inter-frame average in Spectrum Analyzer
(2) Linearly swept sine stimulation + inter-frame peak hold in Spectrum Analyzer
(3) Linearly swept sine stimulation + it is captured and analyzed in one frame in Spectrum Analyzer
(4) Pink noise stimulation + octave analysis and inter-frame average in Spectrum Analyzer
(5) Multi-tones stimulation with each tone with an equal amplitude at the center frequency of each octave band + octave analysis in Spectrum Analyzer
(6) Logarithmically swept sine stimulation + octave analysis in Spectrum Analyzer
(7) Impulse stimulation + Spectrum Analyzer
(8) MLS stimulation + inter-frame average in Spectrum Analyzer
...

Some recommended panel settings for the above parameter measurement are provided in the Panel Setting File (PSF) directory of the software.

The following figure illustrates the Bandwidth of a laptop built-in sound card measured using the mixer-level loopback. White noise was used as the stimulus and 454 frames were averaged.
The following figure illustrates the bandwidth of an EMU Tracker Pre USB sound card measured using an external loopback cable. The measured bandwidth is about 7.3Hz ~ 90443Hz when the sampling rate is 192 kHz. White noise was used as the stimulus and 200 frames were averaged.

Bandwidth can be accessed through the DDPs: BandWidthLowLimit_A(Hz) and BandWidthHighLimit_A(Hz) for Channel A, and BandWidthLowLimit_B(Hz) and BandWidthHighLimit_B(Hz) for Channel B.
To describe the degree of flatness of the magnitude frequency response within a specified frequency band, four DDPs are provided per channel:

- **InBandMinRMS_A(EU)**: the minimum in the specified frequency band in Ch. A.
- **InBandMinF_A(Hz)**: the frequency at which the minimum is located in Ch. A.
- **InBandMaxRMS_A(EU)**: the maximum in the specified frequency band in Ch. A.
- **InBandMaxF_A(Hz)**: the frequency at which the maximum is located in Ch. A.

Similarly, **InBandMinRMS_B(EU)**, **InBandMinF_B(Hz)**, **InBandMaxRMS_B(EU)** and **InBandMaxF_B(Hz)** are used for Ch. B.

3.3.2.8.3.4 Crosstalk

Crosstalk occurs when signal from one channel leaks into another channel. Crosstalk is defined here as the ratio of the power of the fundamental frequency between the channel with the test signal and the channel without the test signal. It is expressed in dB. The input of the channel without the test signal must be terminated and set to zero. The test signal used should be a single-frequency signal and the crosstalk value measured is for that frequency only. The test tone frequency is measured with sub-FFT-bin-size accuracy.

In the Spectrum Analyzer, two crosstalk values will be displayed, one is from Channel A to Channel B, the other is from Channel B to Channel A. To measure the former one, the test signal should be injected into Channel A, and to measure the latter one, the test signal should be injected into Channel B. The test signal is normally sine wave. It is possible to inject two test signals with different frequencies (can be very close but not the same) into the two channels respectively so as to measure the mutual crosstalks simultaneously.

To minimize the effect of spectral leakage on the Crosstalk measurement, the software uses the Kaiser 6 window by default.

The following figure illustrates the Crosstalk at 1 kHz from Channel A to Channel B in a laptop built-in sound card measured using the mixer-level loopback.
The following figure illustrates the crosstalk at 1 kHz from Channel A to Channel B of an EMU Tracker Pre USB sound card measured using an external loopback cable. The crosstalk is about -109dB.

Crosstalk can be accessed through the DDPs: CrossTalkAB(dB) for crosstalk from Channel A to Channel B and CrossTalkBA(dB) for crosstalk from Channel B to Channel A. Some recommended panel settings for crosstalk measurement are provided in the Panel Setting File (PSF) directory of the software.
3.3.2.8.3.5 Harmonics

When this option is selected, the software will analyze up to the 100^{th} harmonic and display the fundamental frequency and its RMS value as well as the RMS values of its 2^{nd} \sim 7^{th} harmonics on the top of the spectrum graph. The fundamental frequency is the peak frequency detected (with sub-FFT-bin-size accuracy). The fundamental frequency and its harmonic frequencies can be accessed through the DDPs: f1Freq_A(Hz)\sim f7Freq_A(Hz) for Channel A, and f1Freq_B(Hz)\sim f7Freq_B(Hz) for Channel B. Their respective RMS values can be accessed through the DDPs: f1RMS_A(EU) \sim f7RMS_A(EU) for Channel A, and f1RMS_B(EU) \sim f7RMS_B(EU) for Channel B. It should be noted that the fundamental frequency and its RMS value can always be accessed in Amplitude Spectrum Display regardless of the parameter measurement option selected. To minimize the effect of spectral leakage on the fundamental and harmonic RMS value measurement, the software uses the Kaiser 6 window by default.

When the FFT size is greater than \frac{1}{2} of the Record Length but less than or equal to the Record Length, the phase angle of the fundamental frequency will also be displayed. It can be accessed through the DDPs: f1Phase_A(D) for Channel A and f1Phase_B(D) for Channel B. This option can be used to perform quantitative phase difference measurement between the two channels, in contrast to the qualitative phase difference measurement through Lissajous pattern. Note that the phase angle is of a sine function.

The fundamental and harmonic frequencies, RMS values and phases can also be accessed through the following DDP Arrays: fnFreq_A(Hz)_Array[?], fnRMS_A(EU)_Array[?] and fnPhase_A(D)_Array[?] for Channel A, and fnFreq_B(Hz)_Array[?], fnRMS_B(EU)_Array[?] and fnPhase_B(D)_Array[?] for Channel B. The “?” should be replaced by the actual order of harmonic-1. That is, “0” for fundament, “1” for the 2^{nd} harmonics and so on. The maximum index number allowed is “99”. Multi-Instrument features a specially designed algorithm which is able to measure the phase of a harmonic accurately even when its amplitude is only 0.01\% of that of the fundamental or the signal itself (when sampling bit resolution =16). The following figure shows an example of harmonic analysis. DDP array viewer is used to display the frequency, RMS value and phase of each harmonic. DDP array viewer will be introduced later.
Two panel setting examples can be found at:

Pro\Harmonic_FFT32768_SR48000_SingleChannel.psf
Pro\Harmonic_FFT32768 SR48000.psf

3.3.2.8.3.6 Energy in User Defined Frequency Bands

When this option is selected, the software can analyze up to 100 user defined frequency bands and display the RMS values of up to 8 of them on the top of the spectrum graph. These values can be accessed through the DDPs: fnBand1RMS_A(EU)~fnBand8RMS_A(EU) for Channel A, and fnBand1RMS_B(EU)~fnBand8RMS_B(EU) for Channel B. Note that the maximum number of bands that can be defined here is actually 100. Their RMS values can be accessed through the DDP arrays: fnRMS_A(EU)_Array[?] for Channel A and fnRMS_B(EU)_Array[?] for Channel B. The“?” should be replaced by the actual frequency band number starting from 0. The maximum allowed number is “99”.

The start and end frequencies of each frequency band can be specified and then the specified frequency band can be added into the list box. Please note that the calculation here is based on narrow band FFT and thus wide band octave analysis should not be used. The finer the FFT frequency resolution, the more accurate the results.

If the X scale is set to an octave scale, this option will be disabled. Under octave analysis, it is possible to obtain the RMS values of a particular octave band through the DDP arrays: oBandRMS_A(EU)_Array[?] for Channel A and oBandRMS_B(EU)_Array[?] for Channel B. The“?” should be replaced by the actual octave band number starting from 0. Please note that when using a cursor reader to read the RMS value of an octave band from the screen, the octave band number “N” displayed starts from 1 instead of 0. Therefore, if you want to access the octave band number N=31 in Channel A on the screen, for example, oBandRMS_A(EU)_Array[30] should be used. A DDP array greatly expands the...
number of DDPs without defining additional DDPs. It is possible to access multiple elements of the array simultaneously.

One efficient way to view the DDP array is to use the DDP array viewer which will be introduced later.

3.3.2.3.7 Peaks

When this option is selected, the software can detect up to 100 peaks and display up to 7 peak frequencies and their RMS values on the top of the spectrum graph. They can be accessed through the DDPs: f1Freq_A(Hz)~f7Freq_A(Hz) and f1RMS_A(EU)~f7RMS_A(EU) for Channel A, and f1Freq_B(Hz)~f7Freq_B(Hz) and f1RMS_B(EU)~f7RMS_B(EU) for Channel B. You can specify the number of peaks to be displayed and the deadband between adjacent peaks. A peak spectral line in frequency domain is normally surrounded by a few sub-peaks. The deadband is used to avoid detecting these surrounding sub-peaks as peaks. Within the dead band specified, only one peak can be detected, in other word, two adjacent peaks must be at least one dead band apart. Peaks can be sorted by either magnitude or frequency. It should be noted that the maximum number of peaks that can be detected here is actually 100. The frequencies, RMS values and phases of the peaks can be accessed through the DDP arrays: fnFreq_A(Hz)_Array[?], fnRMS_A(EU)_Array[?], fnPhase_A(D)_Array[?] for Channel A, and fnFreq_B(Hz)_Array[?], fnRMS_B(EU)_Array[?] and fnPhase_B(D)_Array[?] for Channel B. The “?” should be replaced by the actual peak number starting from 0. The maximum allowed number is “99”. One efficient way to view the DDP array is to use the DDP array viewer which will be introduced later.

To minimize the effect of spectral leakage on the peak RMS value measurement, the software uses the Kaiser 6 window by default. All the peak frequencies here are measured with sub-FFT-bin-size accuracy.

SFDR (Spurious Free Dynamic Range) is also calculated here. It is defined here as the ratio of the power of the first peak to that of the second peak, converted to dB. It can be accessed through the Derived Data Points (DDPs): SFDR_A(dB) for Channel A, and SFDR_B(dB) for Channel B.

3.3.2.3.8 Wow and Flutter

Flutter, wow, drift, and “scrape flutter” are all forms of distortion in analog recording and reproducing systems that use a moving medium. These are caused by undesired frequency modulation introduced into the signal by an irregular motion of the recording medium during the recording, duplicating, and reproducing processes. The measurement of wow and flutter quantifies the amount of 'frequency wobble' (caused by speed fluctuations) present in subjectively valid terms. Different standards exist for wow and flutter measurement. AES6-2008 (r2012) is used here. It is compatible with IEC 60386, IEEE Std-193, CCIR 409-2, and DIN 45507. In particular, “Two Sigma” method is used.
Drift refers to frequency modulation of the signal in the range below approximately 0.5 Hz resulting in distortion which may be perceived as a slow changing of the average pitch.

Wow refers to frequency modulation of the signal in the range of approximately 0.5 Hz to 6 Hz resulting in distortion which may be perceived as a fluctuation of pitch of a tone or program.

Flutter refers to frequency modulation of the signal in the range of approximately 6 Hz to 100 Hz resulting in distortion which may be perceived as a roughening of the sound quality of a tone or program.

“Scrape Flutter” refers to frequency modulation of the signal in the range above approximately 100 Hz, that is caused by stick-slip motion (stiction) of the tape. It results in distortion which may be perceived as a noise added to the signal – that is, a noise not present in the absence of a signal. It is also called “friction noise” or “stiction noise”.

During wow and flutter measurement, a test frequency, usually 3150Hz, is used. The measured signal is demodulated first to obtain the instantaneous frequency deviation from that test frequency. The variation of the instantaneous frequency deviation is then weighted according to the subjective perception of human ears. The weighting curve is shown as follows. It can be seen that the “Drift” and “Scrape Flutter” are greatly suppressed by the weighting factor, leaving only the “Wow and Flutter” prominent. An unweighted option is also provided in the software.

Then “Two Sigma” statistical analysis method is used to find the weighted peak flutter (%). The cumulative time for which the instantaneous speed deviations (%) exceeds the weighted peak flutter (%) in a positive or negative direction is equal to 5% of the given time interval. The wow and flutter value can be accessed through the...
Derived Data Points (DDPs): WowAndFlutter_A(%) for Channel A, and WowAndFlutter_B(%) for Channel B.

It should be noted that for this measurement, the record length of the oscilloscope must be greater than 5 s (corresponding to an achievable frequency resolution of \(1/5 = 0.2\) Hz) in order to achieve sufficient accuracy. The test frequency does not have to be 3150Hz as the software can detect the test frequency automatically based on the frequency peak detected in the Spectrum Analyzer. Other than the frequency peak detection, which may be affected by the settings in the Spectrum Analyzer, the rest of wow and flutter measurement algorithm is independent from the Spectrum Analyzer. The wow and flutter value is calculated with regard to the measured peak frequency which may deviate a bit from the nominal carrier frequency (e.g. 3150 Hz) due to the nature of a FM signal. This deviation usually increases with the degree of wow and flutter. Typically, for 1% wow and flutter, the deviation is less than 1%. Thus, in most of the cases, there is no need to correct the measured wow and flutter value so as to make it referenced to the carrier frequency. If necessary, the correction can be performed as follows, either manually or automatically through User Defined Data Point (UDDP):

\[
\text{[Wow & Flutter with regard to carrier frequency]} = \frac{\text{[Wow & Flutter with regard to peak frequency]} \times \text{[peak frequency]}}{\text{[carrier frequency]}}
\]

The following figure shows a 30s-long 3150Hz carrier frequency modulated by 20Hz with a maximum frequency deviation of 3.15Hz. The theoretical unweighted peak wow and flutter value is thus \(3.15 / 3150 \times \sin(0.95\times90°) = 0.0997\%\). The theoretical weighted peak value is then \(0.508 \times 0.0997\% = 0.0506\%\). This value is accurately measured by the software as shown below.

Two panel setting examples can be found at:
pssf\Pro\WeightedPeakWowAndFlutter_10s
psf\Pro\UnweightedPeakWowAndFlutter_10s
3.3.2.8.3.9 Non-Coherence

This option is used to switch between the coherence and non-coherence function display modes when the View Type of the Spectrum Analyzer is set to Coherence Function. The Total Non-Coherent Distortion and Noise (TNCD) is calculated only under non-coherence function display mode. Please refer to the section for Coherence / Non-Coherence Function for details.

3.3.2.8.3.10 GedLee Metric

It has long been known that the conventional nonlinearity metrics, such as THD and IMD, don’t correlate well with human auditory perception. A number of new nonlinearity metrics have been proposed by many researchers in the past, attempting to take into account the subjective assessment in addition to the objective one. Among them, a notable one is GedLee Metric, proposed by Dr. E.R.Geddes and Dr. L.W.Lee in their paper “Auditory Perception of Nonlinear Distortion - Theory,” presented at the 115th Convention of the Audio Engineering Society, October, 2003.

GedLee metric (Gm) is a quantitative measure of the nonlinearity of an ideal memory-less (static) nonlinear system, which has no frequency dependence or memory in time and thus has an infinite bandwidth. In such a system, the instantaneous output y is determined only by the instantaneous input x through the nonlinear transfer function T(x), i.e. y = T(x). Gm is defined by:

\[G_m = \sqrt{\int_{-1}^{1} \left(\cos \left(\frac{\pi x}{2} \right) \right)^2 \left(\frac{d^2}{dx^2} T(x) \right)^2 dx} \]

The second derivative of T(x) corresponds to the curvature of the T(x) curve. If the system is linear, then the curve becomes a straight line and thus the curvature is zero. As a result, Gm becomes zero. Squaring the second derivative of T(x) alleviates the sign problem and makes upward and downward concave, both of which deviate from a straight line, equally weighted. By taking the second derivative of the nonlinear transfer function T(x), the metric gives more weight to higher order distortions as the second derivative increases in value according to n×(n-1) where n is the order of nonlinearity in T(x)’s polynomial expansion. This attempts to account for the masking effect of the human ear which tends to make higher order nonlinearities more audible than lower order ones. Finally, the offset and linear gain terms in T(x) are completely removed by taking the second derivative, leaving only the nonlinear distortion in Gm calculation.

The squared cosine term in the above formula attempts to address another masking effect which tends to cause nonlinearities that occur at low signal levels to be more audible than those that occur at higher signal levels. It is unity at small values of the signal and zero at the largest ones.

The product of the above two terms is then integrated along x from -1 to +1 (the normalized range of the output signal) after which the square root is taken to yield Gm.
In the real world, it is difficult to find an ideal memory-less system. Thus, \(T(x) \) is frequency dependent in a real system, i.e. \(T(x,f) \). As a result, \(G_m(f) \) is also frequency dependent. However, there is no ambiguity in performing calculation if \(G_m \) is measured at a particular frequency. This is completely analogous to the case of THD. Therefore, in Multi-Instrument, \(G_m \) is measured using a sine wave as the stimulus at a particular frequency. It can be measured together with THD, THD+N, SNR, etc. Please refer to the previous THD measurement section for the selection of a proper testing frequency and window function in order to avoid or suppress the spectral leakage in FFT and obtain correct measurement results. Unlike THD, \(G_m \) takes into account the relative phase information of harmonics as well and thus it requires the software to be able to measure the relative phase of each harmonic accurately. In Multi-Instrument, to measure the phase of each harmonic, the FFT size must be set to a value greater than \(\frac{1}{2} \) of the Record Length, but less than or equal to \(\frac{1}{10} \) of it. Multi-Instrument features a specially designed algorithm which is able to measure the phase angle of a harmonic accurately even when its amplitude is only 0.01% of that of the fundamental or the signal itself. Same as the THD measurement, it is possible to specify the frequency range and the highest order of harmonics used to calculate \(G_m \). The highest order of harmonics allowed in \(G_m \) calculation is 100.

According to the aforementioned researches by Dr. Geddes and Dr. Lee, \(G_m < 1.0 \) can be expected to yield subjective ratings of “imperceptible” and \(G_m < 3.0 \) can be expected to yield subjective ratings of “barely perceptible but not annoying”.

The following two examples (see figures below) are quoted from Keith Howard’s article “Weighting Up”. The stimulus is a 1 kHz sine wave. In these two examples, the measured harmonics have the same amplitudes but different relative phases. In particular, the second example has its 3rd, 7th, 11th, 15th and 19th harmonics’ polarities inverted (i.e. a phase difference of 180 degree) as compared to those of the first example. The phase differences result in different waveforms: the first example shows obvious cross-over distortions while the second one has obvious distortions at its peaks and troughs. In both cases, the measured THD values are the same (about 6.48%), implying that THD is not able to differentiate these two cases. On the other hand, the measured \(G_m \) values are very different: 2.22 and 0.92 respectively, illustrating that \(G_m \) places greater emphasis on the nonlinear distortion perceived at low signal levels than high ones, which is in accordance with the psychoacoustic findings as well as the fact that the signal amplitude of a music is close to the zero crossing for much of the time, with only infrequent excursions to high amplitudes.
It should be noted that the phase angles displayed in the DDP array viewer (will be introduced later) in the above two examples refer to sine function. Internally in the software, the nonlinear transfer function $T(x)$ is expressed as a series of harmonically related cosine terms. The measured phase angles of harmonics are normalized with respect to that of the fundamental in terms of cosine function, and the measured amplitudes of the harmonics are normalized by that of the fundamental. G_m is calculated according to its definition after these normalizations. No inter-frame average in the Spectrum Analyzer is allowed in G_m calculation. Averaging, if needed, can be done through DDP viewer.

G_m can be accessed through the Derived Data Points (DDPs): GedLeeMetric_A for Channel A, and GedLeeMetric_B for Channel B. Two Panel Setting File examples can be found at:

\psf\Pro\GedLeeMetric_FFT32768_SR48000_SingleChannel.psf
\psf\Pro\GedLeeMetric_FFT32768_SR48000.psf
3.3.2.9 Spectrum Analyzer X Scale (Setting SubMenu) (ALT-S-X)

Selection of X Scale is only available in Amplitude Spectrum, Phase Spectrum, Coherence Function, and Transfer Function displays. The horizontal axis (X) can be set to Linear, Logarithmic, Octave (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96). The X Scale dialog can also be accessed by double clicking on X axis.

Octave scales are only available in Amplitude Spectrum display. When an octave scale is selected, the software will check the corresponding minimum FFT size required and change the current FFT size automatically if necessary. The larger the FFT size, the more accurate the octave analysis. The window function will be set to “Rectangle” by default under octave analysis.
The X axis in Amplitude Spectrum, Phase Spectrum, Coherence Function, and Transfer Function displays is a frequency axis. By default, the X axis starts at 0 Hz. If the above Start Frequency checkbox is ticked, you can specify the start frequency of the X axis.

3.3.2.10 Spectrum Analyzer Y Scale (Setting SubMenu) (ALT-S-Y)

Selection of Y Scale is only available in Amplitude Spectrum display. This function can also be accessed by double clicking on Y axis.

There are two display modes for the vertical axis (Y): Absolute Display Mode and Relative Display Mode.

Under Relative Display Mode, the vertical axis is scaled in relative value with reference to the maximum value in the measurement (i.e. $V_r=\text{peak}$), in either linear or dBr (logarithmic) scale.
Under Absolute Display Mode, all spectral data points are plotted based on their absolute values, in V(rms), dBV, dBu, dB, or dBFS. Note that by definition, the reference voltages for dBV and dBu are 1 V(rms) and 0.775 V(rms) respectively. 1 dBu in amplitude spectrum is equivalent to 1 dBm in power spectrum when the load is 600 ohms. The reference level (Vr) for dB is user definable. To set the Vr, press the “Set Vr” button, the Calibration Setting dialog box will pop up. Enter the values of 0dB Reference Vr for both channels at the upper right corner. (Please refer to the section for 0dB Reference Vr). The reference voltage for dBFS is the input full-scale voltage (1/2 Vpp). Note that, if the Sensor Engineering Unit is not “V”, then the above options will be changed accordingly but the concept remains the same. Please refer to Section “Channel A Display Range” described previously for details.

“Per Hz” option is enabled for dBV, dBu, dB and dBFS. If ticked, it provides the respective power spectral density function display.

“Convert to Impedance” option is enabled when the Spectrum Analyzer is in Amplitude Spectrum mode or Transfer Function / Impedance Analyzer mode. The former allows using the single-channel method to measure the impedance vs frequency plot, while the latter allows using the dual-channel method to measure the impedance and phase vs frequency plot. These two methods have already been described previously.

3.3.2.11 Spectrum Analyzer Chart Options (Setting SubMenu) (ALT-S-O)
Same as Oscilloscope.

3.3.2.12 Spectrum Analyzer Reference (Setting SubMenu) (ALT-S-R)

Similar to Oscilloscope. The related six DDPs are: SpectrumComparisonH_A, SpectrumComparisonL_A, SpectrumSimilarity_A, SpectrumComparisonH_B, SpectrumComparisonL_B, SpectrumSimilarity_B.

3.3.2.13 Save Current Panel Setting as Default (Setting SubMenu) (ALT-S-F)

Same as Oscilloscope.

3.3.2.14 Save Current Panel Setting (Setting SubMenu) (ALT-S-S)

Same as Oscilloscope.
3.3.2.15 Load Panel Setting (Setting SubMenu) (ALT-S-L)
Same as Oscilloscope.

3.3.2.16 Configure Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-P)
Same as Oscilloscope.

3.3.2.17 Show Hot Panel Setting Toolbar (Setting SubMenu) (ALT-S-H)
Same as Oscilloscope.

3.3.2.18 Change Password (Setting SubMenu) (ALT-S-W)
Same as Oscilloscope.

3.3.3 Instrument SubMenu
Same as Oscilloscope.

3.3.4 Window SubMenu
Same as Oscilloscope.

3.3.5 Help SubMenu
Same as Oscilloscope.

3.4 Cursor Reader and Markers
Similar to Oscilloscope.

3.5 Peak Values
Spectrum Analyzer will display the peak frequency in Amplitude Spectrum display, the second peak time delay and the corresponding coefficient in Auto Correlation Function display, the peak time delay and the corresponding coefficient in Cross Correlation Function display, the peak frequency and the corresponding coefficient in Coherence Function display, the peak frequency and the corresponding gain and phase in Gain and Phase display, the peak time in Impulse Response display.

3.6 Context Menu
The above context menu will be shown when right clicking anywhere within the Spectrum Analyzer view. It provides additional convenience to you. All menu items in the context menu can also be found in the spectrum analyzer main menu except the following four items: Copy As Bitmap, Copy As Text, Generate Frequency Compensation File (Reference), and Generator Frequency Compensation File (Flat).

- **Copy As Bitmap**

 Same as Oscilloscope

- **Copy As Text**

 Same as Oscilloscope

- **Generate Frequency Compensation File (Reference)**

 This command is used to generate a Frequency Compensation File, which compensates the currently measured magnitude frequency response in Channel A to that in Channel B with the compensation factor at 1 kHz being 0 dB. Channel A is the one to be compensated and Channel B is the reference. For example, you can connect the microphone to be compensated in Channel A and the reference microphone in Channel B, and generate a Frequency Compensation File for the microphone in Channel A using pink noise or white noise. The generated Frequency Compensation File can be loaded later for frequency compensation.

- **Generate Frequency Compensation File (Flat)**

 Under amplitude spectrum mode, this command is used to generate a Frequency Compensation File, which compensates the currently measured magnitude frequency response to a flat one with the compensation factor at 1 kHz being 0 dB. For example, you can use this command to generate a Frequency Compensation File which compensates the frequency response of a sound card to a flat frequency response using white noise and a loopback cable from the sound card’s output to its input. The generated Frequency Compensation File can be loaded later for frequency compensation.

 Under transfer function mode (and not impedance measurement mode), this command is used to generate a Gain and Phase Compensation file, which can be
used to compensate the currently measured gain and phase to 0 dB and 0 degree respectively. For example, you can use this command to generate a Gain and Phase Compensation file which eliminates the small gain and phase difference between the two input channels of the measuring device itself.
4 Signal Generator

4.1 Overview

This is a dual channel Signal Generator (Sweep / Arbitrary/ Function/ Burst/ Noise/ Modulation/ Playback Generator), providing the following types of waveforms/tones for output:

- Sine
- Rectangle (with adjustable duty cycle)
- Triangle
- Saw Tooth
• White Noise
• Pink Noise
• Multi-tones
• Arbitrary via user-configurable waveform library (WFLibrary)
• Maximum Length Sequence (MLS), with adjustable length (127~16777215)
• Dual Tone Multi-Frequency (DTMF)
• Unit Impulse
• Unit Step
• Musical Scale
• Wave File

at either a fixed frequency, or a frequency that sweeps linearly or logarithmically within a specified frequency range and time duration. The output signal can be looped back partially (i.e. only one channel while the other channel can be used for field input) or fully (i.e. both channels), via the software itself, to the input of the Oscilloscope for display and analysis in real time. Synchronized operation between the Signal Generator and the Oscilloscope with a timing accuracy in the same order of the sampling frequency is allowed. Amplitude sweeping, burst signal generation, output signal fade in/out and modulation (AM, FM, PM) are also supported.

For a sound card based system, the accuracy of the output signal is dependent on the sound card. Almost all sound cards are "AC coupled" and thus will filter out DC and near-DC components. As a result, signal components below approximately 10 Hz may be distorted. The flatness of pulses and rectangle waves may be affected and ramp signals may become non-linear.

The Signal Generator panel is intentionally made compact so that it can be displayed and operated simultaneously with other instruments within the confinement of the screen. You can un-tick the “Show Editor” checkbox to make the panel even smaller after you have set your desired parameters.

The toggle button in the Instrument Toolbar is used to open or close the Signal Generator. You can also close it by clicking the "Close" button at the upper right corner of the Signal Generator panel.

4.2 Output Sampling Parameters

The sampling capability is fully dependent on the DAC device. Once the sampling parameters are specified and the Run button is clicked, it will attempt to start outputting using the specified sampling parameters. An error message will pop up if the specified sampling parameters are not supported by the DAC device.

Note that some sound card may not generate an error message even if the sampling frequency specified exceeds its limit. Please check your sound card manual before you can use a sampling frequency greater than 44100 Hz, otherwise measurement error may be introduced.
4.2.1 Sampling Frequency

For a sound card based system, the following sampling frequencies can be selected:
2kHz, 4kHz, 8kHz, 11.025kHz, 16kHz, 22.05kHz, 32kHz, 44.1kHz, 48kHz, 64kHz,
88.2kHz, 96kHz, 176.4kHz, 192kHz, 384kHz, 768kHz.

4.2.2 Sampling Channels

Two options are available:

- **A**
 Only Channel A is sampled. For stereo sound card, it will output the same signal for both channels.

- **A&B**
 Both Channel A and Channel B are sampled. Therefore, different signals can be generated at different channels.

4.2.3 Sampling Resolution

Three options are available: 8 Bit, 16 Bit, 24 Bit.
4.3 Output Signal Parameters

Each channel has its own output signal parameters.

4.3.1 Output Waveform

There are 14 options available.

4.3.1.1 None

No signal will be generated, i.e. the output will be zero. No output frequency and output amplitude need to be specified.

4.3.1.2 Sine

Sinusoid waveform will be generated. Note that the above figure also illustrates the initial phase of the generated signal. If you tick the “No Spectral Leakage” option, the frequency of the sinusoid wave you specify will be fine tuned to the nearest
integer multiple of \([\text{Sampling Frequency of the Oscilloscope}] / [\text{FFT Size of the Spectrum Analyzer}]\), once the “No Spectral Leakage” checkbox is ticked or the Run button of the Signal Generator is pressed. For example, if the sinusoid wave frequency you specify is 1 kHz, the Sampling Frequency of the Oscilloscope is 48 kHz, and the FFT Size of the Spectrum Analyzer is 16384, then the sinusoid wave frequency will be changed to 999.0234375 Hz. This option is used to ensure that an FFT segment in the Spectrum Analyzer contains exactly an integer number of cycles of the signal so as to avoid the spectral leakage issue. Rectangle window function should be used in the Spectrum Analyzer when no spectral leakage occurs.

4.3.1.3 Rectangle

Rectangle waveform will be generated. Note that the above figure also illustrates the initial phase of the generated signal. The duty cycle of the rectangle wave can be specified (refer to the figure below).

4.3.1.4 Triangle
Triangle waveform will be generated. Note that the above figure also illustrates the initial phase of the generated signal.

4.3.1.5 Saw Tooth

Saw Tooth waveform will be generated. Note that the above figure also illustrates the initial phase of the generated signal.

4.3.1.6 White Noise

White Noise will be generated. White noise has an equal amount of energy per Hz of bandwidth. No output frequency needs to be specified.

Unlike most of the digital white noise generators in the market, which eventually repeat the same segment of white noise, the white noise generated here is "true" white noise without any form of repetition. This is very useful when you want to use
averaging method to obtain the frequency response of a Device Under Test (DUT) with continuous white noise excitation.

The following figure illustrates the white noise generated by the software. It has a very flat amplitude spectrum (in dBV) in the range of 0 Hz ~1/2 sampling frequency.

![White Noise](image)

The following figure is the 1/12 octave amplitude spectrum (in dBV) of the same white noise. It shows an incremental of 3dB per octave.

![1/12 Octave Spectrum](image)
4.3.1.7 Pink Noise

Pink Noise will be generated. Pink noise has an equal amount of energy per octave of bandwidth. No output frequency needs to be specified.

Unlike most of the digital pink noise generators in the market, which eventually repeat the same segment of pink noise, the pink noise generated here is "true" pink noise without any form of repetition. This is very useful when you want to use averaging method to obtain the magnitude frequency response of a Device Under Test (DUT) with continuous white noise excitation.

The following figure illustrates the pink noise generated by the software. Its amplitude spectrum (in dBV) shows a slope of -3dB/octave.
The following figure is the 1/12 octave amplitude spectrum (in dBV) of the same pink noise. It shows that the spectrum is rather flat in octave scale.
4.3.1.8 MultiTones

If MultiTones is selected, the above MultiTones Configuration dialog window will popup. There are two configuration methods: Manual or Automatic.

4.3.1.8.1 Manual Configuration

Manual configuration mode allows you to manually add signals with different waveforms, frequencies, amplitudes and initial phases together. You can add as much as 200 tones for each channel. The available waveform options are: Sine, Square, Triangle, Saw Tooth, White Noise, Pink Noise.

The available options for Frequency are: 50 MHz, 20 MHz, 10 MHz, 5 MHz, 2 MHz, 1 MHz, 500 kHz, 200 kHz, 100 kHz, 50 kHz, 20 kHz, 10 kHz, 5 kHz, 2 kHz, 1 kHz, 500 Hz, 200 Hz, 100 Hz, 50 Hz. Alternatively, you can enter any value that is less than or equal to half of the output Sampling Frequency specified in the main window. The Frequency selected or entered must be greater than or equal to 1 and less than or
equal to half of the output Sampling Frequency specified. Otherwise an error message will pop up. It will round off to an integer value even if a non-integer value is entered. As the output frequency for each tone has already been specified in this configuration, no output frequency needs to be specified in the main window.

Relative Amplitude, ranging from 0 to 1, is used as the amplitude weighting factor when different waveforms are added together, in order to define their relative strength. However, it has no impact on the absolute Output Amplitude. The absolute Output Amplitude is specified in the main window. It refers to the maximum value of the resultant waveform of the MultiTones.

You can add a tone into the MultiTones configuration for each channel by clicking "->" button and you can remove a tone from the MultiTones configuration by clicking "<-" button. The MultiTones configuration can be saved and reloaded. The default extension for a MultiTones configuration file is .tcf.

You can change or review the MultiTones configuration by clicking on the following button in the main window:

It will bring up the MultiTones Configuration dialog window.

When the Sweep checkbox in the main window is ticked, a MultiTone waveform can be generated at a frequency (or amplitude) that sweeps linearly or logarithmically within specified frequency (or amplitude) range and time duration. Under frequency swept mode, the frequencies specified in the MultiTones Configuration will be ignored and the Start Frequency and End Frequency specified in the main window will be used instead.

4.3.1.8.2 Automatic Configuration

Automatic configuration mode is activated by selecting the “Automatic” checkbox in the MultiTones Configuration dialog window. This mode is used to automatically configure a multitone signal consisting of multiple frequencies within the specified frequency range. Each frequency is aligned to each center frequency of the FFT bands or fractional octave bands (1/1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96), and has uniform amplitude and a pseudo random initial phase. Pseudo random initial phase is used to avoid any prominent time-domain pattern (e.g. much-higher-than-RMS peaks, steep jumps or falls, etc.) in the aggregate signal and makes it noise-like. However, unlike white noise and pink noise, this noise-like multitone signal is deterministic and repeatable. It converges much faster in frequency response tests and thus requires much less number of averages or even no averages, especially when the Record Length of the oscilloscope is an integer number in seconds. This method can also be used to generate a signal similar to a band-limited pink noise.

In the \TCF directory of the software, OCT1_MultiTone_11.tcf, OCT3_MultiTone_32.tcf, OCT6_MultiTone_63.tcf and OCT12_MultiTone_125.tcf are manually configured Tone Configuration Files (*.tcf) for 1/1, 1/3, 1/6, 1/12 octave band stimulation in the frequency range of 20 Hz ~ 20 kHz, respectively. Each frequency in these configurations has a fixed initial phase of 0 degree. The following
figure shows the 1/3 octave amplitude spectrum (in dBV) of a multitone signal aligned to 1/3 octave bands, generated using OCT3_MultiTone_32.tcf.

The following figure shows the 1/3 octave amplitude spectrum (in dBV) of a multitone signal aligned to 1/3 octave bands in the range of 20 Hz ~ 20 kHz, generated using the automatic configuration method instead.

Both of the above two figures have a perfectly flat spectrum in the range of 20 Hz ~ 20 kHz under 1/3 octave analysis with a rectangle window function. However, the former shows some patterns (unwanted sometimes) in time domain while the latter does not.

The following figure shows the 1/96 octave amplitude spectrum (in dBV) of a multitone signal aligned to 1/96 octave bands in the range of 1 kHz ~ 2 kHz. It is essentially a 1 kHz ~ 2 kHz band limited pink noise.
When “FFT” is selected in the “Align to” selection box, the current FFT size in the spectrum analyzer window and the current sampling frequency in the Sampling Parameter toolbar will be used to calculate the center frequency of each FFT band. The following figure shows the narrow band amplitude spectrum (in dBV) of a multitone signal aligned to 1024 FFT bands sampled at 48kHz, generated using the automatic configuration method. It can be seen that the spectrum is perfectly flat in the range of 20 Hz ~ 20 kHz under 1024-point FFT analysis with a rectangle window function.

It should be noted that when the number of FFT/Octave bands to be stimulated is large, it may take quite a long time INITIALLY for the software to compute the aggregate waveform before it can be output. In that case, if you need this function frequently, you can save it to a 1-second WAV file first and replay it through the Wave File replaying function which will be introduced later.
4.3.1.9 Waveform Library (WFLibrary)

If WFLibrary is selected, a dialog window will popup, asking you to select a Waveform Library file (*.wfl), a BitPerfect Library file (*.bpl), or any file (*.*) that conforms to the format of a Waveform Library file (*.wfl).

Both types of waveform libraries *.wfl and *.bpl define an arbitrary wave shape of one cycle of the signal to be generated using a number of discrete samples (points). When a Waveform Library file (*.wfl) is used, the output frequency (i.e. the repetition rate of the defined wave shape) and amplitude can be specified explicitly. This method works in a similar way as the DDS (Direct Digital Synthesis) method. Scaling, resampling and interpolation are involved in order to generate the signal with the specified frequency and amplitude. The resultant digital samples (before DAC) may not have exactly the same values as the ones defined in the library. In this regard, it is not a bit perfect method. In contrast, when a BitPerfect Library file is used, the samples inside in the library file will be output one by one by the output sampling clock without any modification of their values. The output frequency and amplitude are not specified explicitly. They can only be derived, if required, indirectly from the samples in the library. Only file name with an extension “.bpl” will be treated as a BitPerfect library file.

4.3.1.9.1 Waveform Library File (*.wfl)

A Waveform Library file defines an arbitrary wave shape for one cycle of the signal to be generated. It is a Comma Separated Variable (CSV) text file with the following format:

0,0,0
1,0.006135885,0.006135885
2,0.012271538,0.012271538
......
1022,-0.012271645,-0.012271645
1023,-0.006135992,-0.006135992
......
Each row contains the coordinates of a point of the waveform with three variables: the sequential number, the relative amplitude value for Channel A, the relative amplitude value for Channel B. Minimum two points must be specified per waveform and you can define as many points as you want. There is no restriction on the range of the relative amplitude value as relative values are used inside the software. However, for easy understanding purpose, it is recommended to use values between –1 and 1. It should be noted that if there is DC component in the waveform, it will be filtered out if the signal is output via the sound card hardware.

You can use Microsoft EXCEL, Notepad or other third party software to composite a Waveform Library file. One advantage of using Microsoft EXCEL is that you can make use of its mathematical function to construct the wave shape and then use its charting function to have a preview on it. There is no restriction on the file extension to be used either. However, it is recommended to use .wfl as the file extension.

Waveform libraries provide great flexibility to the Signal Generator. Any arbitrary wave shape can thus be generated by constructing a corresponding waveform library.

An arbitrary waveform can be generated at either a fixed frequency (or amplitude) or a frequency (or amplitude) that sweeps linearly or logarithmically within the specified frequency (amplitude) range and time duration.

You can change the waveform library by clicking on the following button in the main window of the Signal Generator: ... It will bring up the file "Open" Window.

Some sample WFL files are provided in the \WFL directory of the software.

4.3.1.9.2 BitPerfect Library File (*.bpl)

A BitPerfect Library file defines an arbitrary wave shape for one cycle of the signal to be generated. It is a Comma Separated Variable (CSV) text file with the following format:

0,12582912,12582912
1,12582912,12582912
2,4194304,4194304
3,4194304,4194304

Each row contains the coordinates of a sample of the waveform with three variables: the sequential number, the sample (a positive integer value) for Channel A, the sample (a positive integer value) for Channel B. At least one sample must be specified per waveform and you can define as many samples as you want. The positive integer values must be within the range allowed by the output sampling bits: 0~65535 for a 16-bit DAC, and 0~16777215 for a 24-bit DAC. Each output sampling clock pulse will push one sample out until all the samples in the library are done before repeating from Sample 0 again. Thus the repetition rate of the defined waveform equals to [Sampling Frequency] / [Number of Samples Defined in the BitPerfect library].
You can change the waveform library by clicking on the following button in the main window of the Signal Generator:

It will bring up the file "Open" Window.

Some sample BPL files including those for jitter test are provided in the \WFL directory of the software.

4.3.1.9.2.1 J-Test Signal for Jitter Tests

The J-Test signal developed by Julian Dunn is widely used to stimulate worse-case jitter over an AES3 digital audio connection, such as balanced and unbalanced pro formats, as well as the coaxial and optical SPDIF consumer variants. It contains an un-dithered sine wave at 1/4 of the sample rate (e.g. 12kHz for a 48 kHz sample rate), with an amplitude of one half of full scale, to which is added an un-dithered low-frequency (usually at 1/192 of the sampling rate, e.g. 250Hz for a 48kHz sampling rate) square wave with an amplitude of 1 LSB (Least Significant Bit) toggling between 0 to -1 LSB. The spectrum of a 24-bit J-Test signal sampled at 48kHz is shown in the following figure. The high-frequency sine wave has a single frequency component at 12kHz while the low-frequency square wave has a fundamental frequency at 250Hz and all its odd harmonics. It can be seen that the 12kHz signal exceeds its neighboring side bands by more than 170dB and the 250Hz by more than 140 dB under no-jitter condition. This leaves a good room for jitter measurement as jitter will show up as side bands around the signal frequency due to its phase modulation nature.

The above 24-bit J-Test signal is generated using the BitPerfect library: J-Test_24Bit.bpl in the software’s subdirectory “\WFL”. It consists of 192 samples in HEX format:

C00000,C00000,400000,400000 (× 24)
BFFFFF,BFFFFF,3FFFFF,3FFFFF (× 24)
Or in Decimal format (only this format should be used in the BitPerfect library):

12582912,12582912,4194304,4194304 (× 24)
12582911,12582911,4194303,4194303 (× 24)

The above BPL file must be used with a sampling bit resolution of 24. It automatically adapts to any sampling rate selected. For example, if the sampling rate is 48kHz, the repetition rate of the waveform would be 48000/192=250 Hz. If the sampling rate is 44.1kHz, the repetition rate would be 44100/192=229.6875 Hz. The 16-bit counterpart of this file is J-Test_16Bit.bpl in the same subdirectory. SineAtOneFourthFs_24Bit.bpl and SineAtOneFourthFs_16Bit.bpl in the same subdirectory can be used to generate a clean sine wave signal at ¼ of the sampling rate.

4.3.1.10 MLS

Maximum Length Sequence (MLS) is a pseudo random sequence of pulses consisting of the values 1 and −1. It is actually periodic with the period equal to the length of the sequence, which can be chosen from: 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, and 16777215 points (refer to the figure below). You can also explicitly specify how many times the sequence will be repeated, and the signal “Duration” will be updated automatically. If you opt to specify the signal “Duration” instead, then the “Times” will be updated automatically. It can be seen from the above figure that a MLS signal has a very flat amplitude spectrum (in dBV) in the range of 0 Hz ~1/2 sampling frequency.
4.3.1.11 DTMF

A Dual-Tone Multi-Frequency (DTMF) signal is used for telephone signaling over the line in the voice-frequency band to the call switching center. The above panel (same as the standard telephone panel) will pop up when DTMF is selected. A short signal (0.1s by default) consists of two equal-amplitude frequencies will be generated when a button on the panel is pressed. For example, if the button labeled “8” is pressed, a signal contains 852 Hz and 1336 Hz with amplitude ratio 1:1 will be generated.

4.3.1.12 Unit Impulse

A Unit Impulse is a signal with zero values at all places except one sample which has a unit value. Its amplitude spectrum is a horizontal straight line.

The Unit Impulse has some particular use. The following figure illustrates the transfer function of a digital 5513 Hz second order Butterworth low pass filter, measured using the Unit Impulse, with the stimulus data stored in Channel B and the response data stored in Channel A. It shows that the gain maintains at nearly 0 dB from 0 Hz to about 5513 Hz, and then start to drop down very quickly, meanwhile the phase changes gradually from 0 degree at 0 Hz towards –180 degree as the frequency goes to infinity. The cursor reader indicates that at 5523.45 Hz (i.e. around the cutoff frequency), the gain is about –3.03 dB and the phase is about -90.18 degree. Note that the waveform of Channel A in the Oscilloscope represents the unit impulse response of the filter directly.
The following figure illustrates the unit impulse response of a digital 5000 Hz FIR low pass filter (1022-order Kaiser 6 windowed), measured using the Unit Impulse, with the stimulus data stored in Channel B and the response data stored in Channel A. It shows that the impulse response is delayed by \([\text{FIR Order}}/2/\text{[Sampling Rate]}=1022/2/44100=0.0115873\text{ s}\) compared with the stimulus. The impulse response is symmetric and thus the filter has a linear phase response.

4.3.1.13 Unit Step

A Unit Step is a signal that maintains at zero until a sudden jump from zero to a unit value and then maintains at that level afterwards. It can be used to test a system’s step response.
The following figure illustrates the step response of a digital 5513 Hz second order Butterworth low pass filter, measured using the Unit Step signal, with the stimulus data stored in Channel B and the response data stored in Channel A. To avoid the clipping of the digital filter, the stimulus is generated at half of the output full-scale voltage. The figure shows that the overshoot for this case is about 5.5%.

4.3.1.14 Wave File

An 8-bit, 16-bit, or 24-bit standard or extensible wave file in PCM format can be replayed through the Signal Generator. The sampling frequency and bit resolution of the wave file do not have to be the same as those of the Signal Generator as the software is able to convert them automatically. If the wave file contains two channels but the signal generator has only one channel, then the user will be prompted to select which channel of the wave file he/she wants to output. The wave file replaying function is only supported in streaming mode and not supported in DDS mode. Whether the output data are continuous or not depends on the system throughput, sampling frequency, bit resolution, number of sampling channels, etc. It is generally possible to output signals continuously without any interruption using sound cards. In case there is a possible discontinuity in the output signal, a warning cross mark will be shown as follows. If this happens, you will have to offload the computer (e.g. stop the Oscilloscope), or choose a lower sampling frequency, etc.

It is possible to use the Record function in the Oscilloscope to record a wave file and later replay it through the Signal Generator.

4.3.2 Output Frequency
The available options are: 90000 Hz, 50000 Hz, 20000 Hz, 10000 Hz, 5000 Hz, 2000 Hz, 1000 Hz, 500 Hz, 200 Hz, 100 Hz, 50 Hz.

If you cannot find the output frequency you want from the above options, you can enter the value you want directly. It can be a non-integer value. You can also use the left most vertical scroll bar (for Channel A) or the right most vertical scroll bar (for Channel B) to adjust the value of the output frequency.

It should be noted that the software will not allow the fundamental frequency of an output signal to be greater than half of the sampling frequency selected.

The Output Frequency is not applicable and is disabled when the waveform is "None", "White Noise", "Pink Noise" or "MultiTone", "MLS", "DTMF", "Unit Impulse", "Unit Step", or the Signal Generator is under frequency sweep mode.

4.3.3 Output Amplitude

The available options are: 1 V, 0.5 V, 0.2 V, 0.1 V, 0.05 V. Note that the engineering unit of the Output Amplitude can be either V (voltage) or A (ampere) depending on the DAC device used.

If you cannot find the output amplitude you want from the above options, you can enter the value you want directly. You can also use the vertical scroll bar to adjust the value of the output amplitude. The output amplitude will also be displayed in dBFS, dBu or dBV, just below the vertical scroll bar. Click on the text to switch the display.

It should be noted that the software will not allow you to specify an output amplitude greater than the output full-scale voltage (1/2 Vpp) configured during calibration.

The Output Amplitude is disabled when the waveform is "None" or the Signal Generator is under amplitude sweep mode.
4.3.4 Output Phase Difference

You can specify the Output Phase Difference between the output signals in the two channels when their output frequencies are the same. This is only applicable to waveforms "Sine", "Rectangle", "Triangle", "Saw Tooth", in non-sweep mode. For different waveforms, the phase difference is calculated with respect to the initial phase described in the waveform sections.

4.3.5 Output DC Offset

For DAC devices that support output DC offset, the above spin boxes will become visible just below the waveform selection combo boxes on the Signal Generator panel. You can use the spin boxes to adjust the output DC offset.

4.3.6 Waveform Details

Some types of waveform have additional parameters to be specified, such as the duty cycle of a rectangle wave. These parameters are normally displayed just below the waveform selection combo boxes. However, if that place is taken up by the output DC offset parameters, then you can click the button in the main window to call up the Waveform Details dialog.

4.4 Sweep Parameters

When “Sweep” checkbox is ticked and “Frequency” radio box is selected, the waveform can be output at a frequency that sweeps linearly or logarithmically within the specified frequency range and time duration. This is called frequency sweep.
When “Sweep” checkbox is ticked and “Amplitude” radio box is selected, the waveform can be output at an amplitude that sweeps linearly or logarithmically within the specified amplitude range and time duration. This is called amplitude sweep.

4.4.1 Frequency Sweep

4.4.1.1 Start Frequency

Each channel has its own Start Frequency. You can enter a value between 0 Hz and half of the Output Sampling Frequency specified. You will be notified if the value is out of range.

4.4.1.2 End Frequency

Each channel has its own End Frequency. You can enter a value between 0 Hz and half of the Output Sampling Frequency specified. You will be notified if the value is out of range.

4.4.2 Amplitude Sweep

4.4.2.1 Start Amplitude

Each channel has its own Start Amplitude. You can enter a value between 0 and the output full-scale voltage (1/2 Vpp). You will be notified if the value is out of range.

4.4.2.2 End Amplitude

Each channel has its own End Amplitude. You can enter a value between 0 and the output full-scale voltage (1/2 Vpp). You will be notified if the value is out of range.

4.4.3 Sweep Mode

You can specify either linear or logarithmic sweep mode.

A frequency linearly swept sine wave has an equal amount of energy per Hz of bandwidth within the swept frequency range while a frequency logarithmically swept sine wave has an equal amount of energy per octave of bandwidth within the swept frequency range. The spectrum of the former is white-noise-like while that of the latter is pink-noise-like.

For magnitude frequency response tests, a frequency linearly swept sine wave should be analyzed using FFT narrow band analysis while a frequency logarithmically swept sine wave should be analyzed using octave band analysis. The longer the sweep duration, the better the frequency resolution as well as the accuracy at the lower frequency end. The oscilloscope frame width should be set to be the same as the
frequency sweep duration, and the trigger parameters should be set properly to ensure the entire frequency sweep signal is captured in one oscilloscope frame.

The following figure shows the spectrum in (dBV) of a 100-second 10 Hz ~ 21 kHz frequency linearly swept sine wave analyzed using 2048-point FFT analysis, rectangle window, at the sampling rate of 48 kHz. It can be seen that the frequency response is perfectly flat within the range of 20 ~ 20 kHz. Note that the frequency sweep range is a little wider than the frequency range of interest in order to minimize any potential edge effects.

The following figure shows the spectrum in (dBV) of a 10-second 10 ~ 24 kHz frequency logarithmically swept sine wave analyzed using 1/3 octave analysis based on 524288-point FFT with a rectangle window, at the sampling rate of 48 kHz. It can be seen that the frequency response is perfectly flat within the range of 20 ~ 20 kHz. Note that the frequency sweep range is a little wider than the frequency range of interest in order to minimize any potential edge effects. Frequency logarithmic sweep mode spends more time on lower frequencies and thus requires less time to achieve the same resolution at the lower frequency end than frequency linear sweep mode.
4.5 Output Duration/Loop

Under non-sweep mode, the “Duration” specifies the duration of the output signal. If the “Loop” checkbox is ticked, the specified signal will be output continuously until the Signal Generator is stopped manually, and in this case, the “Duration” edit box will be disabled and become not applicable.

Under sweep mode, the “Duration” specifies the sweep duration instead. If the “Loop” checkbox is ticked, the specified signal will be output continuously until the Signal Generator is stopped manually.

4.6 Output Signal Processing

The output signal will undergo the following processes sequentially before it is finally output. They are:

1. Output Mask/Phase Lock
2. Output Fade In/ Fade Out
3. Output Modulation

The above processings are usually conducted by software and supported by streaming mode only.

4.6.1 Output Mask/Phase Lock

The output mask is used to mask “on” or mask “off” the output signal. If the “Mask” checkbox is ticked, you can specify the “on” duration and “off” duration in a mask cycle. You can use this feature to generate a burst-like signal. For signals with “Sine”, “Rectangle”, “Triangle”, “Saw Tooth”, “MultiTones”, “WFLibrary”, or “DTMF”
waveform, you can also force each burst to start at the same phase by ticking the “Phase Lock” checkbox.

The following figure is a sine wave burst signal of 1000 Hz, with a mask-on duration of 0.01 s, a mask-off duration of 0.0055 s, and no phase lock. It can be seen that each burst is not started at the same phase angle.

The following figure illustrates the same signal as above except that the phase lock is enforced here. It can be seen that each burst is started at exactly the same phase angle.
4.6.2 Output Fade In / Out

If “Fade” is ticked, you can specify the Fade In duration for the output signal. This duration starts as the signal output starts. During this duration, the signal amplitude increases linearly from zero to the specified Output Amplitude.

Furthermore, if the output signal is time limited (i.e. the “Loop” checkbox is not ticked), then you can also specify the Fade Out duration. This duration starts at the [End time of the output signal]-[Fade out duration]. During this duration, the signal amplitude decreases linearly from the specified Output Amplitude to zero.

The following figure illustrates a 1-second 50 Hz signal with a Fade In duration of 0.2 s and Fade Out duration of 0.1 s.
4.6.3 Output Modulation

Note that if an output modulation method is selected, all the signal parameters described previously refer to those of the modulating signal, except the output amplitude which refers to the modulated signal.

4.6.3.1 Amplitude Modulation (AM)

In Amplitude Modulation (AM), the amplitude of the carrier signal varies in proportion to the instantaneous amplitude of the modulating signal. The carrier frequency in the range from 0 to ½ of the sampling frequency and the modulation index in the range from 0% to 100% can be specified.

4.6.3.2 Frequency Modulation (FM)

In Frequency Modulation (FM), the instantaneous frequency deviation from the carrier frequency of the modulated signal varies in proportion to the instantaneous amplitude of the modulating signal. The carrier frequency in the range from 0 to ½ of the sampling frequency and the maximum frequency deviation in the range from 0 to 1/2 of the carrier frequency can be specified.

4.6.3.3 Phase Modulation (PM)

In Phase Modulation (PM), the instantaneous phase deviation from the carrier phase (i.e. the phase if no modulation on the carrier signal is applied) of the modulated signal varies in proportion to the instantaneous amplitude of the modulating signal.
The carrier frequency in the range from 0 to $\frac{1}{2}$ of the sampling frequency and the maximum phase deviation in the range from 0 to 180° can be specified.

4.7 Musical Scale

The Musical Scale button is enabled when the signal is “Sine”, “Rectangle”, “Triangle”, “Saw Tooth”, or “WFLibrary”. If pressed, the following Musical Scale panel will pop up. The reference pitch can be adjusted if necessary.

![Musical Scale Panel](image)

4.8 Save Function

The specified output signal can be saved as Wave File (*.wav) or Text File (*.txt) for a time duration specified by the “Duration” (The “Loop” checkbox will be ignored even if it is ticked). If the “Duration” is greater than 1000 seconds, it will be limited to 1000 seconds. If the Save button is pressed, a "Save as" window will be displayed. You can select a file type and enter a file name for the file to be saved.

The wave file format follows the standard Wave File PCM format and can be replayed using third party software such as Microsoft Windows Media Player or loaded back into the software itself. The Text File is a Comma Separated Variable file and has the following format. It can be loaded back into the software using the “Import” command described previously in the Oscilloscope chapter.
• **One channel data format**

;Data Points
;Sampling Frequency (Hz) = 44100
;Sampling Bit Resolution (Bits) = 16
;Sampling Channels = 1
;A: Full-scale Voltage (V) = 1
;A: Sensor Sensitivity (V/V)=1
;Total Data Points = 44100
;No., Time (S), Channel A (V)
1, 0.000000, 0.000000
2, 0.000023, 0.141995
3, 0.000045, 0.281113
4, 0.000068, 0.414534
5, 0.000091, 0.539554
……

Apart from the 8 header lines, each row contains a sequential number, a time stamp (in second) and a value for Channel A (in Volt).

• **Two channel data format**

;Data Points
;Sampling Frequency (Hz) = 44100
;Sampling Bit Resolution (Bits) = 16
;Sampling Channels = 2
;A: Full-scale Voltage (V) = 1
;A: Sensor Sensitivity (V/V)=1
;B: Full-scale Voltage (V)=1
;B: Sensor Sensitivity (V/V) = 1
;Total Data Points = 44100
;No., Time (S), Channel A (V), Channel B (V)
1, 0.000000, 0.000000, 1.000000
2, 0.000023, 0.141732, 1.000000
3, 0.000045, 0.275591, 1.000000
4, 0.000068, 0.409449, 1.000000
5, 0.000091, 0.539554, 1.000000
……

Apart from the 10 header lines, each row contains a sequential number, a time stamp (in second), a value for Channel A (in Volt) and a value for Channel B (in Volt).

4.9 Run/Stop
Clicking this button will generate the signal. It toggles between Run and Stop if clicked. You can also use the Enter key to start/stop the signal generator when the signal generator panel is the current active window.

4.10 Loopback Mode

The available loopback modes depend on the DAC and ADC devices used. For a sound card based system, there are seven loopback modes available:

4.10.1 No Loopback

Under this mode, the Signal Generator and the DAQ-related instruments (e.g. Oscilloscope, Spectrum Analyzer, Multimeter, Spectrum 3D Plot, Data Logger…) work independent within the software.

However, you can still establish a loopback via external means:

- Hardwired loopback via an external loopback cable
- Mixer-level loopback established via selecting "Wave Out Mix" or the like as the input source in the Recording Control under Windows Control Panel.

The "Wave Out Mix" may not be listed as an input source in the Recording Control by default, but you should be able to find it in the Options of the Recording Control. This method feeds the sound card DAC output directly to its ADC input through the sound card mixer, so there is some hardware involved. Be sure to adjust the "Wave Out Mix" volume properly to avoid possible input saturation.

4.10.2 $i_A = o_A$, $i_B = o_B$

Under this mode, a full loopback digital route is established at software level between the output channel and input channel, such that the signal from the Output Channel A is fed into the Input Channel A and the signal from the Output Channel B is fed into the Input Channel B.

During this mode, the Trigger Parameters and Sampling Parameters will be automatically set by the software, and will be disabled and remain not adjustable until the end of the signal output. The frame size of the Oscilloscope has to be 1 second. It should be noted that the signal fed into the input channels is "ideal" in the sense that it
does not pass through any hardware circuit, neither the sound card output channels, nor the sound card input channels. This is different from the hardwired loopback and mixer-level loopback modes described previously.

4.10.3 \(iA = oA, \ iB = oA \)

This loopback mode is similar to the previous one except that both input channels are fed with the signal from the Output Channel A only. This mode is especially useful when you want to check the characteristics of a digital filter in the Oscilloscope and Spectrum Analyzer. In such cases, you should generate a proper stimulus from the Signal Generator and apply the digital filter to the Input Channel A only.

4.10.4 \(iB = oA \)

Under this mode, a partial loopback digital route is established at software level between the Output Channel A and the Input Channel B, such that the signal from the Output Channel A is fed into the Input Channel B and the Input Channel A is still available for field input. Only the first second of data from the Output Channel A will be fed into the Input Channel B. Note that the Oscilloscope should be set in dual channel mode in order to see the signal from the Signal Generator.

4.10.5 Sync. No Loopback

This mode is the same as the No Loopback mode, except that the start of the Signal Generator and the start of the Oscilloscope are synchronized. The synchronization works as follows:

(1) Stop the Oscilloscope manually if it is running
(2) Start the Signal Generator

The Oscilloscope will be started automatically after the Latency Time + the Delay Time specified by “Start OSC after (s)” . The latency time should be calibrated according to the procedure described previously in the section “Latency for Synchronized Output/Input”.

If you tick "Echo Only", the delay time will be automatically filled with the duration of the output signal and the “Loop” checkbox will be un-ticked once, so that the Oscilloscope will start sampling just after the direct output signal finishes, i.e. only the echo will be captured.

4.10.6 Sync. \(iB = oA \)

This mode is the same as the \(iB = oA \) mode, except the synchronization between the Signal Generator and the Oscilloscope as described previously.
4.10.7 Sync. iB←oA

This loopback mode requires an external cable to feed the signal from the Output Channel A into the Input Channel B. Note that as far as the loopback modes are concerned, “=” means a software-level loopback. And “←” means a hardwired loopback.

You can specify when to start the Oscilloscope after the signal has been output from the output channel by the signal generator. The Latency Time has no effect on this mode, because the software uses the actual signal acquired from the Input Channel B to determine when the front of the output signal actually arrives. So this mode is more accurate than “Sync. iB = oA” mode, but the drawback is that it requires two physical input channels with two input jacks and a hardwired loopback. Note that the Trigger Edge, Trigger Level and Trigger Delay must be set properly to allow accurate detection of the front of the output signal. The Trigger Mode will be forced to “Single” and the Trigger Source will be forced to “B” automatically by the software.

4.11 DDS Mode vs Streaming Mode

The signal generator can work in two modes: streaming mode and DDS mode.

Under streaming mode, the output data are computed, continuously if necessary, by the software in the computer and then streamed continuously to the DAC device for output. One advantage of using streaming mode is that you can fully utilize the power of the computer software to generate very complicated signal at minimum hardware cost. However, limited by the software computing speed and the streaming speed, this mode is not able to provide high frequency output. Also, it may consume a lot of CPU time when the output sampling frequency is high or the output signal is complicated. Some DAC devices such as sound cards work only in streaming mode.

Under DDS mode, the computer only needs to send the output signal parameters (such as signal frequency, amplitude, waveform type or shape data, etc.) to the DAC device and the DAC device will take care of the rest. No actual output data will be sent from the computer to the DAC device. This greatly reduces the CPU work load and communication traffic between the computer and the DAC device. Very high signal frequencies can be generated if the DAC device is capable. One drawback is that not all functions supported by the streaming mode are supported by the DDS mode. Please refer to the respective hardware manual for details.

Some DAC devices such as VT DSO-2810 and VT DSO-2810E support both streaming mode and DDS mode. Tick/Untick the DDS checkbox in the above dialog to select the DDS mode/streaming mode. If the selection is disabled, try to select a lower sampling frequency first as the streaming mode may not support very high sampling frequency.
5 Multimeter

5.1 Overview

This is a dual channel Multimeter, providing the following types of digital displays:

- RMS
- dBV
- dBu
- dB
- dB(A)
- dB(B)
- dB(C)
- Frequency Counter
- RPM (Revolutions Per Minute)
- Counter
- Duty Cycle
- F/V (Frequency Voltage Conversion)
- Cycle RMS
- Cycle Mean
- Pulse Width
- Vibrometer

The above items from Frequency Counter to Pulse Width involves a pulse counting process, and the software allows you to configure the counter trigger level and trigger hysteresis in order to rectify the analog signal to rectangular pulses before counting. The frequency dividing ratio can also be configured.

The toggle button in the Instrument Toolbar is used to open or close the Multimeter. You can also close it by clicking the "Close" button at the upper right corner of the Multimeter window.
5.2 View Parameters

View parameters determine how the collected data are analyzed and displayed. There are 15 types of views, as shown in the above figure.

5.2.1 RMS

Under this mode, the Multimeter displays the RMS values of the current frame of data, which are the same as the ones displayed in the Oscilloscope but with bigger font. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable.

The corresponding DDPs are: RMS_A(EU) for Channel A and RMS_B(EU) for Channel B.

5.2.2 dBV

Under this mode, the Multimeter displays the dBV values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable. If the Sensor Engineering Unit is not voltage, then this option means dBEU.

The corresponding DDPs are: RMSDBV_A(dBEU) for Channel A and RMSDBV_B(dBEU) for Channel B.

5.2.3 dBu

Under this mode, the Multimeter displays the dBu values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable.

The corresponding DDPs are: RMSDBu_A(dBu) for Channel A and RMSDBu_B(dBu) for Channel B.

5.2.4 dB
Under this mode, the Multimeter displays the dB values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable. The reference level for dB is user definable and can be set via [Setting]>[Calibration]>>“0dB Reference Vr”.

The corresponding DDPs are: RMSDB_A(dB) for Channel A and RMSDB_B(dB) for Channel B.

5.2.5 dB(A)

Under this mode, the Multimeter displays the dB(A) values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable. Note that the Spectrum Analyzer will be forced to display Amplitude Spectrum with A weighting.

The corresponding DDPs are: RMSDBA_A(dBA) for Channel A and RMSDBA_B(dBA) for Channel B.

5.2.6 dB(B)

Under this mode, the Multimeter displays the dB(B) values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable. Note that the Spectrum Analyzer will be forced to display Amplitude Spectrum with B weighting.

The corresponding DDPs are: RMSDBB_A(dBB) for Channel A and RMSDBB_B(dBB) for Channel B.

5.2.7 dB(C)

Under this mode, the Multimeter displays the dB(C) values of the current frame of data. You can display or hide the value for any channel. The rest of the view parameters in the view parameter toolbar are not applicable. Note that the Spectrum Analyzer will be forced to display Amplitude Spectrum with C weighting.

The corresponding DDPs are: RMSDBC_A(dBC) for Channel A and RMSDBC_B(dBC) for Channel B.

5.2.8 Frequency Counter

Under this mode, the Multimeter displays the counted frequency values of the current frame of data. You can display or hide the value for any channel.

You can also set the Counter Trigger Level and Counter Trigger Hysteresis as well as the ratio of the Frequency Divider. The Counter Trigger Level and Counter Trigger Hysteresis are useful parameters under the Frequency Counter, RPM, Counter, Duty
Cycle, F/V, Cycle RMS, Cycle Mean modes. They are used as parameters to rectify the analog signal in the Oscilloscope to rectangular pulses before the counting process. They behave in a similar way as the Trigger Level and Trigger Hysteresis of an electronic Schmitt trigger, except that they are relative values which vary with the maximum and minimum values detected in the current frame of data. The Counter Trigger Level can be adjusted from −100% to 100%, with −100% corresponding to the minimum value and 100% corresponding to the maximum value. The Counter Trigger Hysteresis can be adjusted within 0 ~ 100% of the actual range of the frame of data, i.e. [the maximum value]−[the minimum value]. These two parameters are visualized as two markers along the vertical axes in the Oscilloscope, as shown in the following figure. The markers on A axis are for Channel A, and the markers on B axis are for Channel B.

In the figure, the signals in both channels are a 1 kHz sine wave mixed with a white noise at an amplitude ratio of 5:1. The Counter Trigger Level and Counter Trigger Hysteresis for Channel A are 50% and 0% respectively. In contrast, they are 50% and 20% respectively for Channel B. The Multimeter measures a frequency of 1457.355 Hz for Channel A which is incorrect due to the fluctuation caused by the white noise component. For Channel B, the measured frequency is 999.930 Hz which is very accurate. Thus, setting a proper hysteresis value is important when there are noises present in the signal.

The corresponding DDPs are: Freq_A(Hz) for Channel A and Freq_B(Hz) for Channel B.
5.2.9 RPM

Under this mode, the Multimeter displays the RPM (Revolutions Per Minute) values of the current frame of data. You can display or hide the value for any channel.

The Counter Trigger Level, Counter Trigger Hysteresis and Frequency Divider are applicable to this mode.

The corresponding DDPs are: RPM_A(rpm) for Channel A and RPM_B(rpm) for Channel B.

5.2.10 Counter

Under this mode, the Multimeter displays the total counts of the current frame of data. You can display or hide the value for any channel.

The Counter Trigger Level, Counter Trigger Hysteresis and Frequency Divider are applicable to this mode.

The corresponding DDPs are: TotalCount_A for Channel A and TotalCount_B for Channel B.

5.2.11 Duty Cycle

Under this mode, the Multimeter displays the duty cycle values of the current frame of data. You can display or hide the value for any channel.

The Counter Trigger Level and Counter Trigger Hysteresis are applicable to this mode.

The corresponding DDPs are: DutyCycle_A(%) for Channel A and DutyCycle_B(%) for Channel B.

5.2.12 F/V

Under this mode, the Multimeter displays the voltage values after performing frequency counting and subsequent frequency/voltage conversion of the current frame of data. You can display or hide the value for any channel. The frequency/voltage conversion factors are configured as described previously in the section “Frequency Voltage Conversion Factor”.

The Counter Trigger Level, Counter Trigger Hysteresis and Frequency Divider are applicable to this mode.

The corresponding DDPs are: FVC_A(V) for Channel A and FVC_B(V) for Channel B.
5.2.13 Cycle RMS

Under this mode, the Multimeter displays the RMS values calculated from an integer number of signal cycles within an Oscilloscope frame. The Cycle RMS is the “true” RMS value of a periodic signal. An Oscilloscope frame does not necessarily contain an integer number of signal cycles and thus the RMS value of the Oscilloscope frame may not be the same as the Cycle RMS value.

You can display or hide the value for any channel. The Counter Trigger Level and Counter Trigger Hysteresis are applicable to this mode.

The corresponding DDPs are: CycleRMS_A(EU) for Channel A and CycleRMS_B(EU) for Channel B. This display mode also generates the following DDPs: CyclePWR_A(W) for Channel A, which is the cycle power and equal to CycleRMS_A(EU)² / [Load Factor A], and CyclePWR_B(W) for Channel B, which is the cycle power and equal to CycleRMS_B(EU)² / [Load Factor B]. The load factors for Channels A and B can be specified via [Setting]>[Calibration].

5.2.14 Cycle Mean

Under this mode, the Multimeter displays the Mean values calculated from an integer number of signal cycles within an Oscilloscope frame. The Cycle Mean is the “true” mean value of a periodic signal. An Oscilloscope frame does not necessarily contain an integer number of signal cycles and thus the Mean value of the Oscilloscope frame may not be the same as the Cycle Mean value.

You can display or hide the value for any channel. The Counter Trigger Level and Counter Trigger Hysteresis are applicable to this mode.

The corresponding DDPs are: CycleMean_A(EU) for Channel A and CycleMean_B(EU) for Channel B.

5.2.15 Pulse Width

Under this mode, the Multimeter displays the pulse width of the current frame of data. You can display or hide the value for any channel.

The Counter Trigger Level and Counter Trigger Hysteresis are applicable to this mode.

The corresponding DDPs are: PulseWidth_A(s) for Channel A and PulseWidth_B(s) for Channel B.

5.2.16 Vibrometer
If one of the sensors used is an acceleration, velocity or displacement sensor, then you can choose this mode to display the RMS, Peak or Peak-to-Peak (PP) and Crest Factor (CF) values for Acceleration, Velocity and Displacement.

You can display or hide the values for any channel. The rest of the view parameters in the view parameter toolbar are not applicable.

This display mode generates the following DDPs for Channel A:

1. AccelerationRMS_A(g): Acceleration RMS value in g for Channel A
2. AccelerationRMS_A(m/s^2): Acceleration RMS value in m/s^2 for Channel A
3. AccelerationPeak_A(g): Acceleration Peak value in g for Channel A
4. AccelerationPeak_A(m/s^2): Acceleration Peak value in m/s^2 for Channel A
5. AccelerationCF_A: Acceleration Crest Factor for Channel A
6. VelocityRMS_A(mm/s): Velocity RMS value for Channel A
7. VelocityPeak_A(mm/s): Velocity Peak value for Channel A
8. VelocityCF_A: Velocity Crest Factor for Channel A
9. DisplacementRMS_A(µm): Displacement RMS value for Channel A
10. DisplacementPP_A(µm): Displacement Peak-to-Peak value for Channel A
11. DisplacementCF_A: Displacement Crest Factor for Channel A

It also generates similar DDPs for Channel B.

5.3 Menu

The menu for the Multimeter is only a subset of the menu for the Oscilloscope described previously.
6 Data Logger

6.1 Overview

This is a dual channel parameter data logger. It provides long time data logging function for 196 derived data points and 16 user defined data points, including RMS value, Peak Frequency, Sound Pressure Level, RPM, THD, etc. Up to eight data logger windows can be opened and each window can trace up to 8 variables. The logged data can be reloaded for review.

The push button in the Instrument Toolbar is used to open a new data logger window. You can close it by clicking the "Close" button at the upper right corner of the window.
6.2 Configuration

Whenever the “Data Logger” button in the Instrument Toolbar is clicked, a new data logger window will be opened. A configuration dialog will pop up on the top of the data logger window to allow you to enter the configuration first. Parameters to be configured include the Derived Data Points (DDP) to be logged, Legend (color and label of each DDP), Update Threshold for each DDP (if “Update Threshold” is chosen for the Logging Method), Time Interval (if “Time Interval” is chosen for the Logging method), Logging Method, etc.

6.2.1 Derived Data Point and User Defined Data Point

In this software, a Derived Data Point (DDP) refers to a data point that is derived from a frame of raw DAQ data. The DDP values are updated whenever a new frame of data arrives. A User Defined Data Point (UDDP) is usually a function of certain DDPs. It is updated after all DDPs are updated. UDDPs can be configured by the user using DDP viewer. The following derived data points and user defined data points can be selected for logging.

<table>
<thead>
<tr>
<th>No.</th>
<th>DDP</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max_A(EU)</td>
<td>Maximum value for Channel A or combined</td>
<td>OSC</td>
</tr>
<tr>
<td>2</td>
<td>Min_A(EU)</td>
<td>Minimum value for Channel A or combined</td>
<td>OSC</td>
</tr>
<tr>
<td>3</td>
<td>PP_A(EU)</td>
<td>Peak-to-Peak value for Channel A or combined</td>
<td>OSC</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mean_A(EU)</td>
<td>Mean value for Channel A or combined OSC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RMS_A(EU)</td>
<td>RMS value for Channel A or combined OSC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PWR_A(W)</td>
<td>Power value (= RMS^2 / Load Factor) for Channel A or combined OSC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PeakLevelPercent_A(%)</td>
<td>Peak Level in Percentage for Channel A OSC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PeakLeveldBFS_A</td>
<td>Peak Level in dBFS for Channel A OSC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>f1Freq_A(Hz)</td>
<td>1. Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Frequency at peak impedance for Channel A</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>f2Freq_A(Hz)</td>
<td>1. The 2nd Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 2nd Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>f3Freq_A(Hz)</td>
<td>1. The 3rd Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 3rd Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>f4Freq_A(Hz)</td>
<td>1. The 4th Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 4th Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>f5Freq_A(Hz)</td>
<td>1. The 5th Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 5th Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>f6Freq_A(Hz)</td>
<td>1. The 6th Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 6th Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>f7Freq_A(Hz)</td>
<td>1. The 7th Harmonic Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The 7th Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>fnFreq_A(Hz)_Array[0]</td>
<td>1. Harmonic Frequencies for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Peak Frequency for Channel A n should be replaced by a number starting from 0.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>f1RMS_A(EU)</td>
<td>1. RMS value at Peak Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Peak impedance for Channel A</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>f2RMS_A(EU)</td>
<td>1. RMS value of the 2nd harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. RMS value of the 2nd peak for Channel A</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>f3RMS_A(EU)</td>
<td>1. RMS value of the 3rd harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. RMS value of the 3rd peak for Channel A</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>f4RMS_A(EU)</td>
<td>1. RMS value of the 4th harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. RMS value of the 4th peak for Channel A</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>f5RMS_A(EU)</td>
<td>1. RMS value of the 5th harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. RMS value of the 5th peak for Channel A</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>f6RMS_A(EU)</td>
<td>1. RMS value of the 6th harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. RMS value of the 6th peak for Channel A</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>f7RMS_A(EU)</td>
<td>RMS value of the 7th harmonics for Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>fnRMS_A(EU)_Array[?]</td>
<td>RMS value of harmonics for Channel A 1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMS value of peaks for Channel A 1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“?” should be replaced by a number starting from 0.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>f1Phase_A(D)</td>
<td>Phase of peak frequency for Channel A 1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>fnPhase_A(D)_Array[?]</td>
<td>Phases of harmonics for Channel A 1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phases of peaks for Channel A 1. SPEC (AMS+HARM) 2. SPEC (AMS+Peak)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>“?” should be replaced by a number starting from 0.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>THD_A(%)</td>
<td>THD in % for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>THDN_A(%)</td>
<td>THD+N in % for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>THDDB_A(dB)</td>
<td>THD in dB for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>THDNDNB_A(dB)</td>
<td>THD+N in dB for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>SINAD_A(dB)</td>
<td>SINAD in dB for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>SNR_A(dB)</td>
<td>SNR in dB for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>NoiseLevel_A(EU)</td>
<td>Noise Level in EURms for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ENOB_A(Bit)</td>
<td>Effective Number of Bits for Channel A 1. SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>IMD_A(%)</td>
<td>IMD in % for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>IMD_A(dB)</td>
<td>IMD in dB for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>GedLeeMetric_A</td>
<td>GedLee Metric for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>BandWidthLowLimit_A(Hz)</td>
<td>Band Width Low Limit for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>BandWidthHighLimit_A(Hz)</td>
<td>Band Width High Limit for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>fBand1RMS_A(EU)</td>
<td>RMS value of frequency band 1 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>fBand2RMS_A(EU)</td>
<td>RMS value of frequency band 2 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>fBand3RMS_A(EU)</td>
<td>RMS value of frequency band 3 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>fBand4RMS_A(EU)</td>
<td>RMS value of frequency band 4 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>fBand5RMS_A(EU)</td>
<td>RMS value of frequency band 5 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>fBand6RMS_A(EU)</td>
<td>RMS value of frequency band 6 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>fBand7RMS_A(EU)</td>
<td>RMS value of frequency band 7 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>fBand8RMS_A(EU)</td>
<td>RMS value of frequency band 8 for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SFDR_A(dB)</td>
<td>Spurious Free Dynamic Range for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RMSDBV_A(dBEU)</td>
<td>RMS value in dBEU for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>RMSDBu_A(dBu)</td>
<td>RMS value in dBu for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>RMSDB_A(dB)</td>
<td>RMS value in dB for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>RMSDBA_A(dBA)</td>
<td>RMS value in dB(A) for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>RMSDBB_A(dBB)</td>
<td>RMS value in dB(B) for Channel A 1. SPEC (AMS+1IMD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>RMSDBC_A(dBC)</td>
<td>RMS value in dB(C) for Channel A</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Freq_A(Hz)</td>
<td>Counted Frequency for Channel A</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>RPM_A(rpm)</td>
<td>Counted RPM for Channel A</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>TotalCount_A</td>
<td>Total Count for Channel A</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>DutyCycle_A(%)</td>
<td>Duty Cycle for Channel A</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>FVC_A(V)</td>
<td>Voltage after F/V conversion for Channel A</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>CycleRMS_A(EU)</td>
<td>Cycle RMS value for Channel A</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>CycleMean_A(EU)</td>
<td>Cycle Mean value for Channel A</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>CyclePWR_A(W)</td>
<td>Cycle Power value (= CycleRMS² / Load Factor) for Channel A</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>PulseWidth_A(s)</td>
<td>Pulse Width for Channel A</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>AccelerationRMS_A(g)</td>
<td>Acceleration RMS value in g for Channel A</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>AccelerationRMS_A(m/s²)</td>
<td>Acceleration RMS value in m/s² for Channel A</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>AccelerationPeak_A(g)</td>
<td>Acceleration Peak value in g for Channel A</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>AccelerationPeak_A(m/s²)</td>
<td>Acceleration Peak value in m/s² for Channel A</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>AccelerationCF_A</td>
<td>Acceleration Crest Factor for Channel A</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>VelocityRMS_A(mm/s)</td>
<td>Velocity RMS value for Channel A</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>VelocityPeak_A(mm/s)</td>
<td>Velocity Peak value for Channel A</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>VelocityCF_A</td>
<td>Velocity Crest Factor for Channel A</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>DisplacementRMS_A(µm)</td>
<td>Displacement RMS value for Channel A</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>DisplacementPP_A(µm)</td>
<td>Displacement Peak-to-Peak value for Channel A</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>DisplacementCF_A</td>
<td>Displacement Crest Factor for Channel A</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>WaveformComparisonH_A</td>
<td>Waveform High or High-High Limit Alarm for Channel A</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>WaveformComparisonL_A</td>
<td>Waveform Low or Low-Low Limit Alarm for Channel A</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>WaveformComparisonSimilarity_A</td>
<td>Waveform Similarity Coefficient for Channel A (Reserved)</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SpectrumComparisonH_A</td>
<td>Spectrum High or High-High Limit Alarm for Channel A</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>SpectrumComparisonL_A</td>
<td>Spectrum Low or Low-Low Limit Alarm for Channel A</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>SpectrumComparisonSimilarity_A</td>
<td>Spectrum Similarity Coefficient for Channel A (Reserved)</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>InBandMinF_A(Hz)</td>
<td>1. Frequency at which the minimum RMS value is located in the specified frequency band in Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Frequency at which the minimum impedance value is located in the specified frequency band in Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Frequency at which the minimum gain value is located in the specified frequency band</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Frequency at which the minimum impedance value is located in the specified frequency band</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>InBandMinRMS_A(EU)</td>
<td>1. The minimum RMS value in the specified frequency band in Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. The minimum impedance value in the specified frequency band in Channel A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. The minimum gain value in the specified frequency band</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. The minimum impedance value in the specified frequency band</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Variable</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
</tbody>
</table>
| 83 | InBandMaxF_A(Hz) | 1. Frequency at which the maximum RMS value is located in the specified frequency band in Channel A
2. Frequency at which the maximum impedance value is located in the specified frequency band in Channel A
3. Frequency at which the maximum gain value is located in the specified frequency band
4. Frequency at which the maximum impedance value is located in the specified frequency band |
| 84 | InBandMaxRMS_A(EU) | 1. The maximum RMS value in the specified frequency band in Channel A
2. The maximum impedance value in the specified frequency band in Channel A
3. The maximum gain value in the specified frequency band
4. The maximum impedance value in the specified frequency band |
| 85 | oBandRMS_A(EU)_Array[?] | 1. RMS value in a particular octave band in Channel A. "?" should be replaced by the actual band number starting from 0.
2. Impedance value in a particular octave band in Channel A. "?" should be replaced by the actual band number starting from 0. |
| 86 | WowAndFlutter_A(%) | Wow & Flutter for Channel A |
| 87 | SecondPeakACFTimeDelay_A(s) | Time Delay at the second peak of the Auto-Correlation Function for Channel A |
| 88 | SecondPeakACFCoeffic_A | The second peak Auto-Correlation Function Coefficient for Channel A |
| 89 | Loudness_A(SONE) | Sound Loudness for Channel A |
| 90 | LoudnessLevel_A(PHON) | Sound Loudness Level for Channel A |
| 91 | Sharpness_A(ACUM) | Sound Sharpness for Channel A |
| 92 | Max_B(EU) | Maximum value for Channel B |
| 93 | Min_B(EU) | Minimum value for Channel B |
| 94 | PP_B(EU) | Peak-to-Peak value for Channel B |
| 95 | Mean_B(EU) | Mean value for Channel B |
| 96 | RMS_B(EU) | RMS value for Channel B |
| 97 | PWR_B(W) | Power value (= RMS^2 / Load Factor) for Channel B |
| 98 | PeakLevelPercent_B(%) | Peak Level in Percentage for Channel B |
| 99 | PeakLeveldBFS_B | Peak Level in dBFS for Channel B |
| 100 | f1Freq_B(Hz) | 1. Peak Frequency for Channel B
2. Frequency at peak impedance for Channel B |
| 101 | f2Freq_B(Hz) | 1. The 2nd Harmonic Frequency for Channel B
2. The 2nd Peak Frequency for Channel B |
| 102 | f3Freq_B(Hz) | 1. The 3rd Harmonic Frequency for Channel B
2. The 3rd Peak Frequency for Channel B |
| 103 | f4Freq_B(Hz) | 1. The 4th Harmonic Frequency for Channel B
2. The 4th Peak Frequency for Channel B |
| 104 | f5Freq_B(Hz) | 1. The 5th Harmonic Frequency for Channel B
2. The 5th Peak Frequency for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 105 | f6Freq_B(Hz) | 1. The 6th Harmonic Frequency for Channel B
2. The 6th Peak Frequency for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 106 | f7Freq_B(Hz) | 1. The 7th Harmonic Frequency for Channel B
2. The 7th Peak Frequency for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 107 | fnFreq_B(Hz)_Array[0] | 1. Harmonic frequencies for Channel B
2. Peak frequency for Channel B
"?" should be replaced by a number starting from 0. | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 108 | f1RMS_B(EU) | 1. RMS value at Peak Frequency for Channel B
2. Peak impedance for Channel B | 1. SPEC (AMS)
2. SPEC (AMS+IM) |
| 109 | f2RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 110 | f3RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 111 | f4RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 112 | f5RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 113 | f6RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 114 | f7RMS_B(EU) | 1. RMS value of the 2nd harmonics for Channel B
2. RMS value of the 2nd peak for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 115 | fnRMS_B(EU)_Array[?] | 1. RMS value of harmonics for Channel B
2. RMS value of peaks for Channel B
"?" should be replaced by a number starting from 0. | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 116 | f1Phase_B(D) | Phase of Peak Frequency for Channel B | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
| 117 | fnPhase_B(D)_Array[?] | 1. Phases of harmonic frequencies for Channel B
2. Phases of peak frequencies for Channel B
"?" should be replaced by a number starting from 0. | 1. SPEC (AMS+HARM)
2. SPEC (AMS+Peak) |
<p>| 118 | THD_B(%) | THD in % for Channel B | SPEC (AMS) |
| 119 | THDN_B(%) | THD+N in % for Channel B | SPEC (AMS) |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>THDDB_B(dB)</td>
<td>THD in dB for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>121</td>
<td>THDNDDB_B(dB)</td>
<td>THD+N in dB for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>122</td>
<td>SINAD_B(dB)</td>
<td>SINAD in dB for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>123</td>
<td>SNR_B(dB)</td>
<td>SNR in dB for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>124</td>
<td>NoiseLevel_B(EU)</td>
<td>Noise Level in EUrms for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>125</td>
<td>ENOB_B(Bit)</td>
<td>Effective Number of Bits for Channel B</td>
<td>SPEC (AMS)</td>
</tr>
<tr>
<td>126</td>
<td>IMD_B(%)</td>
<td>IMD in % for Channel B</td>
<td>SPEC (AMS+1IMD)</td>
</tr>
<tr>
<td>127</td>
<td>IMD_B(dB)</td>
<td>IMD in dB for Channel B</td>
<td>SPEC (AMS+1IMD)</td>
</tr>
<tr>
<td>128</td>
<td>GedLeeMetric_B</td>
<td>GedLee Metric for Channel B</td>
<td>SPEC (AMS+AMS)</td>
</tr>
<tr>
<td>129</td>
<td>BandWidthLowLimit_B(Hz)</td>
<td>Band Width Low Limit for Channel B</td>
<td>SPEC (AMS+BW)</td>
</tr>
<tr>
<td>130</td>
<td>BandWidthHighLimit_B(Hz)</td>
<td>Band Width High Limit for Channel B</td>
<td>SPEC (AMS+BW)</td>
</tr>
<tr>
<td>131</td>
<td>fBand1RMS_B(EU)</td>
<td>RMS value of frequency band 1 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>132</td>
<td>fBand2RMS_B(EU)</td>
<td>RMS value of frequency band 2 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>133</td>
<td>fBand3RMS_B(EU)</td>
<td>RMS value of frequency band 3 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>134</td>
<td>fBand4RMS_B(EU)</td>
<td>RMS value of frequency band 4 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>135</td>
<td>fBand5RMS_B(EU)</td>
<td>RMS value of frequency band 5 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>136</td>
<td>fBand6RMS_B(EU)</td>
<td>RMS value of frequency band 6 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>137</td>
<td>fBand7RMS_B(EU)</td>
<td>RMS value of frequency band 7 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>138</td>
<td>fBand8RMS_B(EU)</td>
<td>RMS value of frequency band 8 for Channel B</td>
<td>SPEC (AMS+EFB)</td>
</tr>
<tr>
<td>139</td>
<td>SFDR_B(dB)</td>
<td>Spurious Free Dynamic Range for Channel B</td>
<td>SPEC (AMS+Peak)</td>
</tr>
<tr>
<td>140</td>
<td>RMSDBV_B(dBEU)</td>
<td>RMS value in dBEU for Channel B</td>
<td>MM (dBV)</td>
</tr>
<tr>
<td>141</td>
<td>RMSDBu_B(dBu)</td>
<td>RMS value in dBu for Channel B</td>
<td>MM (dBu)</td>
</tr>
<tr>
<td>142</td>
<td>RMSDB_B(dB)</td>
<td>RMS value in dB for Channel B</td>
<td>MM (dB)</td>
</tr>
<tr>
<td>143</td>
<td>RMSDBA_B(dBA)</td>
<td>RMS value in dB(A) for Channel B</td>
<td>MM (dBA) SPEC (AMS+A)</td>
</tr>
<tr>
<td>144</td>
<td>RMSDBBB_B(dBB)</td>
<td>RMS value in dB(B) for Channel B</td>
<td>MM (dBB) SPEC (AMS+B)</td>
</tr>
<tr>
<td>145</td>
<td>RMSDBBC_B(dBC)</td>
<td>RMS value in dB(C) for Channel B</td>
<td>MM (dBC) SPEC (AMS+C)</td>
</tr>
<tr>
<td>146</td>
<td>Freq_B(Hz)</td>
<td>Counted Frequency for Channel B</td>
<td>MM (Freq. Counter)</td>
</tr>
<tr>
<td>147</td>
<td>RPM_B(rpm)</td>
<td>Counted RPM for Channel B</td>
<td>MM (RPM)</td>
</tr>
<tr>
<td>148</td>
<td>TotalCount_B</td>
<td>Total Count for Channel B</td>
<td>MM (Counter)</td>
</tr>
<tr>
<td>149</td>
<td>DutyCycle_B(%)</td>
<td>Duty Cycle for Channel B</td>
<td>MM (Duty Cycle)</td>
</tr>
<tr>
<td>150</td>
<td>FVC_B(V)</td>
<td>Voltage after F/V conversion for Channel B</td>
<td>MM (F/V)</td>
</tr>
<tr>
<td>151</td>
<td>CycleRMS_B(EU)</td>
<td>Cycle RMS for Channel B</td>
<td>MM (CycleRMS)</td>
</tr>
<tr>
<td>152</td>
<td>CycleMean_B(EU)</td>
<td>Cycle Mean for Channel B</td>
<td>MM (CycleMean)</td>
</tr>
<tr>
<td>153</td>
<td>CyclePWR_B(W)</td>
<td>Cycle Power (= CycleRMS² / Load Factor) for Channel B</td>
<td>MM (CyclePWR)</td>
</tr>
<tr>
<td>154</td>
<td>PulseWidth_B(s)</td>
<td>Pulse Width for Channel B</td>
<td>MM (Pulse Width)</td>
</tr>
<tr>
<td>155</td>
<td>AccelerationRMS_B(g)</td>
<td>Acceleration RMS value in g for Channel B</td>
<td>MM (Vibrometer)</td>
</tr>
<tr>
<td>156</td>
<td>AccelerationRMSB_B(m/s²)</td>
<td>Acceleration RMS value in m/s² for Channel B</td>
<td>MM (Vibrometer)</td>
</tr>
<tr>
<td>157</td>
<td>AccelerationPeak_B(g)</td>
<td>Acceleration Peak value in g for Channel B</td>
<td>MM (Vibrometer)</td>
</tr>
<tr>
<td>No.</td>
<td>Parameter</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>158</td>
<td>AccelerationPeak_B(m/s^2)</td>
<td>Acceleration peak value in m/s^2 for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>159</td>
<td>AccelerationCF_B</td>
<td>Acceleration Crest Factor for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>160</td>
<td>VelocityRMS_B(mm/s)</td>
<td>Velocity RMS value for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>161</td>
<td>VelocityPeak_B(mm/s)</td>
<td>Velocity Peak value for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>162</td>
<td>VelocityCF_B</td>
<td>Velocity Crest Factor for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>163</td>
<td>DisplacementRMS_B(µm)</td>
<td>Displacement RMS value for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>164</td>
<td>DisplacementPP_B(µm)</td>
<td>Displacement Peak-to-Peak value for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>165</td>
<td>DisplacementCF_B</td>
<td>Displacement Crest Factor for Channel B</td>
<td>MM(Vibrometer)</td>
</tr>
<tr>
<td>166</td>
<td>WaveformComparisonH_B</td>
<td>Waveform High or High-High Limit Alarm for Channel B</td>
<td>OSC</td>
</tr>
<tr>
<td>167</td>
<td>WaveformComparisonL_B</td>
<td>Waveform Low or Low-Low Limit Alarm for Channel B</td>
<td>OSC</td>
</tr>
<tr>
<td>168</td>
<td>WaveformComparisonSimilarity_B</td>
<td>Waveform Similarity Coefficient for Channel B (Reserved)</td>
<td>OSC</td>
</tr>
<tr>
<td>169</td>
<td>SpectrumComparisonH_B</td>
<td>Spectrum High or High-High Limit Alarm for Channel B</td>
<td>SPEC</td>
</tr>
<tr>
<td>170</td>
<td>SpectrumComparisonL_B</td>
<td>Spectrum Low or Low-Low Limit Alarm for Channel B</td>
<td>SPEC</td>
</tr>
<tr>
<td>171</td>
<td>SpectrumComparisonSimilarity_B</td>
<td>Spectrum Similarity Coefficient for Channel B (Reserved)</td>
<td>SPEC</td>
</tr>
</tbody>
</table>
| 172 | InBandMinF_B(Hz) | 1. Frequency at which the minimum RMS value is located in the specified frequency band in Channel B
 | 2. Frequency at which the minimum impedance value is located in the specified frequency band in Channel B
 | 3. Frequency at which the minimum gain value is located in the specified frequency band
 | 4. Frequency at which the minimum impedance value is located in the specified frequency band | 1. SPEC (AMS)
 | 2. SPEC (AMS+IM)
 | 3. SPEC (TF)
 | 4. SPEC (TF+IM) |
| 173 | InBandMinRMS_B(EU) | 1. The minimum RMS value in the specified frequency band in Channel B
 | 2. The minimum impedance value in the specified frequency band in Channel B
 | 3. The phase at the minimum gain value in the specified frequency band
 | 4. The phase at the minimum impedance value in the specified frequency band | 1. SPEC (AMS)
 | 2. SPEC (AMS+IM)
 | 3. SPEC (TF)
 | 4. SPEC (TF+IM) |
| 174 | InBandMaxF_B(Hz) | 1. Frequency at which the maximum RMS value is located in the specified frequency band in Channel B
 | 2. Frequency at which the maximum impedance value is located in the specified frequency band in Channel B
 | 3. Frequency at which the maximum gain value is located in the specified frequency band
 | 4. Frequency at which the maximum impedance value is located in the specified frequency band | 1. SPEC (AMS)
 | 2. SPEC (AMS+IM)
 | 3. SPEC (TF)
 | 4. SPEC (TF+IM) |
| 175 | InBandMaxRMS_B(EU) | 1. The maximum RMS value in the specified frequency band in Channel B
 | 2. The maximum impedance value in the specified frequency band in Channel B
 | 3. The phase at the maximum gain value in | 1. SPEC (AMS)
 | 2. SPEC (AMS+IM)
 | 3. SPEC (TF)
<pre><code> | 4. SPEC (TF+IM) |
</code></pre>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Formula</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>oBandRMS_B(EU)_Array[?]</td>
<td>RMS value in a particular octave band in Channel B. “?” should be replaced by the actual band number starting from 0.</td>
<td>1. SPEC (AMS+OCT) 2. SPEC (AMS+OCT+IM)</td>
<td></td>
</tr>
<tr>
<td>WowAndFlutter_B(%)</td>
<td>Wow & Flutter for Channel B</td>
<td>SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>SecondPeakACFTimeDelay_B(s)</td>
<td>Time Delay at the second peak of the Auto-Correlation Function for Channel B</td>
<td>SPEC (ACF)</td>
<td></td>
</tr>
<tr>
<td>SecondPeakACFCof_B</td>
<td>The second peak Auto-Correlation Function Coefficient for Channel B</td>
<td>SPEC (ACF)</td>
<td></td>
</tr>
<tr>
<td>Loudness_B(SONE)</td>
<td>Sound Loudness for Channel B</td>
<td>SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>LoudnessLevel_B(PHON)</td>
<td>Sound Loudness Level for Channel B</td>
<td>SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>Sharpness_B(ACUM)</td>
<td>Sound Sharpness for Channel B</td>
<td>SPEC (AMS)</td>
<td></td>
</tr>
<tr>
<td>PeakCCFTimeDelay_AB(s)</td>
<td>Time Delay at the peak of the Cross-Correlation Function</td>
<td>SPEC (CCF)</td>
<td></td>
</tr>
<tr>
<td>PeakCCFCof_AB</td>
<td>Peak Cross-Correlation Function Coefficient</td>
<td>SPEC (CCF)</td>
<td></td>
</tr>
<tr>
<td>PeakCHFFreq_AB(Hz)</td>
<td>Frequency at the peak of the Coherence Function</td>
<td>SPEC (CHF)</td>
<td></td>
</tr>
<tr>
<td>TNCD_AB(%)</td>
<td>Total Non-Coherent Distortion and Noise</td>
<td>SPEC (CHF)</td>
<td></td>
</tr>
<tr>
<td>PeakGainFreq_AB(Hz)</td>
<td>1. Frequency at the peak gain 2. Frequency at the peak impedance</td>
<td>1. SPEC (TF) 2. SPEC (TF+IM)</td>
<td></td>
</tr>
<tr>
<td>PeakGainValue_AB(dB)</td>
<td>1. Peak gain Value 2. Peak impedance Value</td>
<td>1. SPEC (TF) 2. SPEC (TF+IM)</td>
<td></td>
</tr>
<tr>
<td>PeakGainPhase_AB(D)</td>
<td>1. Phase at the peak gain 2. Phase at the peak impedance</td>
<td>1. SPEC (TF) 2. SPEC (TF+IM)</td>
<td></td>
</tr>
<tr>
<td>PeakIPRTime_AB(s)</td>
<td>Time at the peak of the Impulse Response</td>
<td>SPEC (IPR)</td>
<td></td>
</tr>
<tr>
<td>PeakIPRValue_AB</td>
<td>Peak Impulse Response Value</td>
<td>SPEC (IPR)</td>
<td></td>
</tr>
<tr>
<td>GainAtGeneratedFreq(dB)</td>
<td>1. Gain at the frequency generated by Channel A of the Signal Generator 2. Impedance at the frequency generated by Channel A of the Signal Generator</td>
<td>1. SPEC (TF,GEN) 2. SPEC (TF+IM,GEN)</td>
<td></td>
</tr>
<tr>
<td>PhaseAtGeneratedFreq(D)</td>
<td>1. Phase at the frequency generated by Channel A of the Signal Generator 2. Phase at the frequency generated by Channel A of the Signal Generator</td>
<td>1. SPEC (TF,GEN) 2. SPEC (TF+IM,GEN)</td>
<td></td>
</tr>
<tr>
<td>CrossTalkAB(dB)</td>
<td>Crosstalk from Channel A to Channel B</td>
<td>SPEC(AMS,CT)</td>
<td></td>
</tr>
<tr>
<td>CrossTalkBA(dB)</td>
<td>Crosstalk from Channel B to Channel A</td>
<td>SPEC(AMS,CT)</td>
<td></td>
</tr>
<tr>
<td>UDDP1(UU)</td>
<td>User Defined Data Points</td>
<td>DDP Viewer</td>
<td></td>
</tr>
<tr>
<td>UDDP16(UU)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- OSC---Oscilloscope, SPEC---Spectrum Analyzer, GEN---Signal Generator, MM---Multimeter

6.2.2 Legend

Each DDP can be assigned a unique color and label.
6.2.3 Logging Method

Three logging methods are supported:

- **Fastest**
 The data logger will take one record whenever new data are available

- **Time Interval**
 The data logger will take one record whenever new data are available and the specified time duration has elapsed since the last update.

- **Update Threshold**
 The data logger will take one record whenever new data are available and the change of any DDP compared with its last update exceeds the specified update threshold for that DDP.

6.2.4 Log File Name

For real time logging, there is no need to specify the log file name as it will be assigned automatically by the software, according to the following naming convention:

Example: 2007-10-31-09-55-45-180-1.log

where:
- 2007 -----Year: 2007
- 10--------Month: October
- 31--------Day: 31
- 09--------Hour: 9
- 55--------Minute: 55
- 45--------Second: 45
- 180------Millisecond: 180
- 1---------Data Logger Window No.: 1
- .log--------File Extension

The above time stamp corresponds to the first data point captured in the data logger window. The logged data will be automatically written to the hard disk once the number of data points per trace exceeds 32767 (configurable via [Setting]>[Display]>"Data Logger”>"Number of records per log file”). A new log file will be created automatically afterwards to continue the logging process. Note that the logged data will be lost if the DDP configuration is changed before the data in memory are saved to the hard disk. If you do not want to lose the data, you should perform “Data Logger Export” or “Data Logger Copy As Text” command first. When you close the data logger window, the logged data points that are still in the computer memory will be automatically written to the hard disk.

The log file name is always displayed in the title bar of the data logger window. A “*” sign will be displayed on the right of the log file name if the log file has not been persisted in the hard disk.
Pressing the “File Open” button in the Configuration dialog will allow you to select and load a historical log file for review.

The log file is a Comma Separated Variable (CSV) TXT file. It has the following format which is self-explanatory. All data are logged with accuracy in millisecond.

<table>
<thead>
<tr>
<th>No.</th>
<th>Time(s)</th>
<th>Max_A(V)</th>
<th>Min_A(V)</th>
<th>Mean_A(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007-10-31 12:04:52:021</td>
<td>-0.0132446</td>
<td>-0.0142517</td>
<td>-0.0137236</td>
</tr>
<tr>
<td>2</td>
<td>2007-10-31 12:04:53:022</td>
<td>-0.0132751</td>
<td>-0.0144348</td>
<td>-0.0139354</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3 Context Menu

Data Logger \(x \) Scale...
Data Logger \(y \) Scale...
Data Logger Chart Options...
Data Logger Configuration...

Data Logger Copy As Bitmap...
Data Logger Copy As Text...

Data Logger Export...
Data Logger Print...

Data Logger does not have its own menu and view parameter toolbar. Its functions are accessed via its context menu. The context menu pops up when you right click anywhere within the data logger window.
6.3.1 X Scale

The X Scale dialog can be accessed via the context menu or by double clicking on X axis of the window. You can specify the span of X axis, the default value is 10 s. If the data spans a larger time range, then a horizontal scrollbar will appear at the bottom of the window to allow you to scroll over the full time range.

During real time logging, the screen will automatically scroll to show the latest data as new data are continuously fed into the right of the window.
6.3.2 Y Scale

The Y Scale dialog can be accessed via the context menu or by double clicking on Y axis. You can specify the range of Y axis and choose between linear or logarithmic scales. Note that the software will disallow logarithmic scale if the range covers negative or zero values.
6.3.3 Chart Options

Same as Oscilloscope

6.3.4 Copy As Bitmap
Same as Oscilloscope

6.3.5 Copy As Text
Same as Oscilloscope

6.3.6 Export
Same as Oscilloscope

6.3.7 Print
Same as Oscilloscope
6.4 Cursor reader and Markers
Similar to those in the Oscilloscope, except that the cursor reader can read out the measurement points for all traces (up to 8) and the markers mark the point exactly at the point of mouse click rather than sticking to the nearest measurement point.
7 Spectrum 3D Plot

7.1 Overview

Spectrum 3D Plot is used to trace the spectra variation with time. Two types of plots are provided:

- Waterfall, with adjustable tilt angle of T axis, adjustable height of Y axis, and selectable color palettes.

- Spectrogram, with selectable color palettes
The toggle button in the Instrument Toolbar is used to open or close the Spectrum 3D Plot. The button is enabled only when the Spectrum Analyzer is under Amplitude Spectrum mode, because the spectral profiles are fed from the Spectrum Analyzer under that mode. All intra-frame processings set in the Spectrum Analyzer are applicable to the Spectrum 3D Plot too.

You can also close the Spectrum 3D Plot window by clicking the "Close" button at its upper right corner.

7.2 View Parameters

View parameters determine how the collected data are analyzed and displayed.

7.2.1 Frequency Range (F)

Same as Amplitude Spectrum display in the Spectrum Analyzer.
7.2.2 Channel A Display Range

Same as Amplitude Spectrum display in the Spectrum Analyzer.

7.2.3 View Type

Two types of views are supported: Waterfall Plot and Spectrogram.

7.2.4 Channel B Display Range

Same as Amplitude Spectrum display in the Spectrum Analyzer.

7.2.5 Number of Spectral Profiles (T axis)

This parameter determines the maximum number of spectral profiles to be displayed in one graph. Each spectral profile is computed from a frame of data in time domain. The oldest spectral profile will be dropped when a new spectral profile comes in.

7.2.6 Tilt Angle of T Axis

The Tilt Angle of T axis is the angle between T axis and the vertical axis. It can be adjusted from 0 degree to a maximum value (less than 90 degrees) which is determined by the Height Percentage of Y axis.

This parameter is only applicable to the Waterfall Plot and is not applicable to the Spectrogram.
7.2.7 Height Percentage of Y Axis

The Height Percentage is the ratio of the height of Y axis to the height of the plot area. It can be adjusted from 5% to 90%. Lowering the Height Percentage will cause the tilt angle of T axis go down accordingly if the tilt angle exceeds its upper limit determined by the Height Percentage.

7.3 Menu

Spectrum 3D Plot has its own menu and additional functions can be accessed through the menu items in each submenu.

7.3.1 File SubMenu

<table>
<thead>
<tr>
<th>File</th>
<th>Setting</th>
<th>Instrument</th>
<th>Window</th>
<th>Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td></td>
<td></td>
<td></td>
<td>Ctrl+N</td>
</tr>
<tr>
<td>Open...</td>
<td>Ctrl+O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Frame by Frame...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save</td>
<td>Ctrl+S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Save As...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum 3D Plot Export...</td>
<td>Ctrl+P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum 3D Plot Print...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectrum 3D Plot Print Preview</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 C:\Scope\...\wav\ADC11.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 E:\PianoC.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 C:\Scope\...\k(2)3(1).wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 C:\Scope\...\wav\Chirp10s.wav</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This submenu provides access to the file operation and printing functions, and is similar to that of the Oscilloscope.
7.3.2 Setting SubMenu

This submenu provides access to various setting functions, and is similar to that of the Oscilloscope, except the following items.

7.3.2.1 Spectrum 3D Plot X Scale (Setting SubMenu) (ALT-S-X)

X axis (or F axis) can be set to either linear or log scale. This function can also be accessed by double clicking on X axis.
7.3.2.2 Spectrum 3D Plot Y Scale (Setting SubMenu) (ALT-S-Y)

There is only one display mode for the vertical axis (Y): Absolute Mode. All spectral data points are plotted based on their absolute values, in V(rms), dBV, dBu, dB, or dBFS.

This function can also be accessed by double clicking on Y axis.

7.3.2.3 Spectrum 3D Plot Chart Options (Setting SubMenu) (ALT-S-O)
Six color palettes are available for the Waterfall Plot: No Color, Rainbow, Bluish, Yellowish, Grayscale, Inverted Grayscale. Note that except the first option, the rest options may slow down the process a bit, but you can choose to dye the waterfall plot after you stop the data acquisition.

Five color palettes are available for the Spectrogram: Rainbow, Bluish, Yellowish, Grayscale, Inverted Grayscale.

7.3.3 Instrument SubMenu

Same as Oscilloscope.

7.3.4 Window SubMenu

Same as Oscilloscope.

7.3.5 Help SubMenu

Same as Oscilloscope.

7.4 Context Menu
The above context menu will be shown when right clicking anywhere within the Spectrum 3D Plot. It provides additional convenience to you. All menu items in the context menu can also be found in the Spectrum 3D Plot main menu except the following two items: Copy As Bitmap, and Copy As Text.

7.5 3D Cursor Reader

The Waterfall Plot and the Spectrogram have different 3D cursor readers.

7.5.1 3D Cursor Reader for Waterfall Plot

The cursor reader will be shown when you left click anywhere within the plot area of the bottom plane (X-T). The contour of the spectral profile with a time stamp nearest to the point of mouse click will be highlighted (thus T is determined). This profile
will also be projected onto the front plane (X-Y) so that it can be easily viewed against the X and Y scales. Within this profile, the cursor reader will point to the measurement point with a frequency nearest to the point of mouse click (thus X is determined). With T and X determined, Y is thus determined from the measurement results. The cursor reader always appears as a pair, one for each channel. The cursor’s (X, Y, T) readings for both channels are displayed on the top the graph. Their difference in Y is also shown.

7.5.2 3D Cursor Reader for Spectrogram

The cursor reader will be shown when you left click anywhere within the Spectrogram (X-T). The spectral profile with a time stamp nearest to the point of mouse click will be extracted and displayed at the bottom of the Spectrogram (thus T is determined). Within this profile, the cursor reader will point to the measurement point with a frequency nearest to the point of mouse click (thus X is determined). With T and X determined, Y is thus determined from the measurement results. The cursor reader always appears as a pair, one for each channel. The cursor’s (X, Y, T) readings for both channels are displayed on the top the graph. Their difference in Y is also shown.

7.6 Time Stamp

The time stamp of the latest spectral profile is displayed at the bottom of the 3D graph, and the time stamp of the oldest spectral profile is displayed on the top the 3D graph.
8 Device Test Plan

8.1 Overview

Device Test Plan provides a mechanism for you to configure and conduct your own device test steps. It takes the advantage of the sound card’s (or other ADC/DAC hardware’s) capability of simultaneous input and output, to generate a stimulus to the Device Under Test (DUT) and acquire the response from that device at the same time. Different stimuli can be generated and the response can be analyzed in different ways. The DUT can be marked as Pass or Fail after a sequence of test steps and a test report can be generated. Device Test Plan supports 23 instructions with corresponding parameters. Test results (e.g. Gain vs Frequency, Phase vs Frequency, etc.) can be plotted in up to 8 X-Y plots and reported in one textual log window in real time. Device Test Plan supports connection with external systems through serial communication.

Device Test Plan can also be used to perform other functions such as data file batch processing, batch signal event capturing and storing, etc.

The toggle button in the Instrument Toolbar is used to open or close the Device Test Plan. You can also close the Device Test Plan panel by clicking the "Close" button at its upper right corner.

Device Test Plan includes User Defined Plan and Dedicated Test Plan (e.g. LCR Meter). Unlike the User Defined Plan which is fully configurable by the user, the Dedicated Test Plan has some built-in non-configurable algorithm dedicated for testing certain types of devices. Only the User Defined Plan will be described in this chapter.

The screen layout of the Device Test Plan panel is divided into four parts: Control Bar, Result/Option Area, Process Viewer, and Step Editor.
8.2 Step Editor

A device test plan consists of a number of test steps. Step Editor is used to configure each single step. A test step consists of a number of parameters. Instruction is the key parameter in any test step, because it determines what other parameters are required for that step.

8.2.1 Insert A Step

Pressing the “Insert” button will insert a step in the Process Viewer (described later). If no step is selected (highlighted) in the Process Viewer, the new step will be added at the end of the plan, otherwise it will be added just before the selected (highlighted) step.

8.2.2 Modify A Step

Pressing the “Modify” button will overwrite the entire content of the selected (highlighted) step in the Process Viewer (described later). Nothing will happen if no step is selected (highlighted) in the Process Viewer.

8.2.3 Delete A Step

Pressing the “Delete” button will delete the entire content of the selected (highlighted) step in the Process Viewer (described later). Nothing will happen if no step is selected (highlighted) in the Process Viewer.

8.2.4 Clear All

Pressing the “Clear All” button will delete all steps in the current plan.
18 instructions are supported. They are described as follows.

8.2.5.1 SIO

SIO (Synchronized Input & Output) is used to command the Signal Generator to generate the specified stimulus to the DUT and use the DAQ-related instruments (e.g. Oscilloscope, Spectrum Analyzer, Multimeter ……) to acquire and analyze the response from the DUT.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
</table>
| Description | Description | You can enter a description that best describes this step. The default description is “Synchronized Input & Output”.
 |

In addition to the description, it is possible to add optional parameters for this instruction. All these parameters should be put within a single pair of “{“ and “}“. Each parameter should also be surrounded by its own identification character pair. The supported optional parameters are:

[TimeoutStepNo]: specifies Step No. to go to when timeout error occurs. TimeoutStepNo must be surrounded by a pair of “[“ and “]“. A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used.

Examples:
“3”: jump to Step 3
“+3”: jump 3 steps forwards
“-3”: jump 3 steps backwards
“(abc)”: jump to Step Label “abc” regardless of which Step No. “abc” is at.

By default, the plan will pop up a message and
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>SIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop upon timeout error unless this parameter is specified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code><TimeoutSeconds></code>: specifies the timeout seconds. TimeoutSeconds must be surrounded by a pair of <code>"<"</code> and <code>">"</code>. It is in additional to the instruction’s duration. By default, 10 seconds will be used, unless this parameter is specified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: Synchronized Input & Output {[5]<20>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Waveform</td>
<td>A-Waveform</td>
<td>Waveform to be generated in Channel A, available options are: None, Sine, Rectangle, Triangle, Saw Tooth, White Noise, Pink Noise, MultiTones, WFLibrary, MLS. For those parameters that cannot be set on the Step Editor, e.g. the duty cycle for Rectangle waveform and length for MLS, the values set before the opening of the Device Test Plan (if any) or otherwise the default values will be used. Loading a Panel Setting File in the test plan will also update these values.</td>
</tr>
<tr>
<td>For MultiTones and WFLibrary, you will be prompted to select a file name, and you can also check/uncheck the flag “+1” on the right of the File Name edit box. This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, The file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>A-Frequency(Hz)</td>
<td>Frequency to be generated in Channel A.</td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>A-Amplitude(V)</td>
<td>Amplitude to be generated in Channel A.</td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Waveform</td>
<td>B-Waveform</td>
<td>Same as that of Channel A.</td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>B-Frequency(Hz)</td>
<td>Frequency to be generated in Channel B.</td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>B-Amplitude(V)</td>
<td>Amplitude to be generated in Channel B.</td>
</tr>
<tr>
<td>This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Note</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Phase Difference (D)</td>
<td>Phase difference between the signals to be generated in Channel A and Channel B. Applicable only if none of the waveforms in Channel A and Channel B is None, White Noise, Pink Noise, MultiTones, WFLibrary, or MLS, and the frequencies in both Channel are equal. This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
</tr>
<tr>
<td>A-DC(V)</td>
<td>DC offset of Channel A. Applicable only to those DAC devices that support DC offset adjustment. This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
</tr>
<tr>
<td>B-DC(V)</td>
<td>DC offset of Channel B. Applicable only to those DAC devices that support DC offset adjustment. This parameter is ignored when the Overwrite checkbox is not selected.</td>
<td></td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>They define the DDPs to be obtained from the DAQ-related instruments after the response from the DUT is captured. The values of the DDPs will be displayed in these fields at runtime. In case the value is not available due to any reason (e.g. incorrect settings), then “NA” will be filled instead.</td>
<td></td>
</tr>
</tbody>
</table>

If the “No Trigger” checkbox is not selected, the Oscilloscope’s Trigger Mode will be forced to Single mode, and its Record Length will be forced to be half of the stimulus signal duration if it is greater than [Duration-0.05] second. In other words, the stimulus signal must last at least 50ms longer than the Record Length. The Oscilloscope will be commanded to start after 4/5 of [Duration - Record Length] elapses. This is to compensate the latency between the time when the Signal Generator is commanded to start and the time when the generated signal is received at the input, and also to ensure that the DUT reaches its stable state after being excited by the stimulus. The timing diagram is shown as follows.
x+y in the above figure accounts for $1/5$ of $[\text{Duration} - \text{Record Length}]$. The trigger condition should be set properly such that y is greater than zero. If you set the Trigger Edge to “DF”, Trigger Level to “0” and Trigger Delay to “0”, then x will be 0. Difference DUT and ADC/DAC device have different latency and require different time to get stable, thus designing a correct timing scheme is critical for the SIO instruction.

If the Oscilloscope remains un-triggered for $[10 \text{ seconds} + 2 \times \text{RecordLength}]$ after the signal duration elapses due to any reasons, a time out error will be generated and the test plan will be stopped.

The rest parameters for the DAQ-related instruments will be kept as they were before the opening of the Device Test Plan (if any) or otherwise the system default values will be used. Loading a Panel Setting File in the test plan will also update these values. It is recommended to load a properly configured Panel Setting File in the beginning of each test plan to ensure all settings are in good shape.

When the Overwrite checkbox is not selected, the signal generator parameters (waveform, frequency, amplitude, phase difference between the two channels, DC offset) on the Signal Generator panel will be kept as they are and will not be overwritten by the parameters here. This feature is useful if you want to load a Panel Setting File and then execute the SIO command without changing the above parameters.

If the “No Trigger” checkbox is selected, the Oscilloscope’s Trigger Mode will be forced to Auto mode. However, only one frame of data will be acquired before the oscilloscope stops automatically. The “No Trigger” option allows the SIO command to measure a DC voltage, which does not contain an edge trigger.

8.2.5.2 OUT

OUT (Signal Output) is used to command the Signal Generator to generate the specified signal. Unlike SIO, the DAQ will not be started under this instruction.
<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Output”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>OUT</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>Duration(s)</td>
<td>It defines how long the specified signal will last. The value must be a multiple of 0.1 second.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>Delay(s)</td>
<td>It defines the idle time between the end of the signal output and the start of the next step. The value must a multiple of 0.1 second.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>A-Waveform</td>
<td>Waveform to be generated in Channel A, available options are: None, Sine, Rectangle, Triangle, Saw Tooth, White Noise, Pink Noise, MultiTones, WFLibrary, MLS. For those parameters that cannot be set on the Step Editor, e.g. the duty cycle for Rectangle waveform and length for MLS, the values set before the opening of the Device Test Plan (if any) or otherwise the default values will be used. Loading a Panel Setting File in the test plan will also update these values. For MultiTones and WFLibrary, you will be prompted to select a file name, and you can also check/uncheck the flag “+1” on the right of the File Name edit box. This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, The file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>A-Frequency(Hz)</td>
<td>Frequency to be generated in Channel A. This parameter is ignored when the Overwrite checkbox is not selected.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>A-Amplitude(V)</td>
<td>Amplitude to be generated in Channel A. This parameter is ignored when the Overwrite checkbox is not selected.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>B-Waveform</td>
<td>Same as that of Channel A. This parameter is ignored when the Overwrite checkbox is not selected.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>B-Frequency(Hz)</td>
<td>Frequency to be generated in Channel B. This parameter is ignored when the Overwrite checkbox is not selected.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>B-Amplitude(V)</td>
<td>Amplitude to be generated in Channel B. This parameter is ignored when the Overwrite checkbox is not selected.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>Phase Difference (Degree)</td>
<td>Phase difference between the signals to be generated in Channel A and Channel B. Applicable only if none of the waveforms in Channel A and Channel B is None, White Noise, Pink Noise, MultiTones, WFLibrary, or MLS.</td>
</tr>
</tbody>
</table>
and the frequencies in both channels are equal.

This parameter is ignored when the Overwrite checkbox is not selected.

A-DC(V) | A-DC(V) | DC offset of Channel A. Applicable only to those DAC devices that support DC offset adjustment.

This parameter is ignored when the Overwrite checkbox is not selected.

B-DC(V) | B-DC(V) | DC offset of Channel B. Applicable only to those DAC devices that support DC offset adjustment.

This parameter is ignored when the Overwrite checkbox is not selected.

DDPs to be captured | N.A. | N.A.

8.2.5.3 STI

STI (Single Triggered Input) is used to command the DAQ to start in Single trigger mode if the “No Trigger” checkbox is not selected, or in Auto trigger mode if that is selected. The rest parameters for the DAQ-related instruments will be kept as they were before the opening of the Device Test Plan (if any) or otherwise the system default values will be used. Loading a Panel Setting File in the test plan will also update these values.

The step finishes after a frame of data is captured.

This instruction can be used together with other instructions to capture and store a sequence of events automatically.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
</tbody>
</table>
| Description | Description | You can enter a description that best describes this step. The default description is “Single Triggered Input”.

In addition to the description, it is possible to add optional parameters for this instruction. All these parameters should be put within a single pair of “{“ and “}”. Each parameter should also be surrounded by its own identification character pair. The supported optional parameters are:

- [TimeoutStepNo]: specifies Step No. to go to when timeout error occurs. TimeoutStepNo must be surrounded by a pair of “[“ and “]”. A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used.

Examples:

- “3”: jump to Step 3
“+3”: jump 3 steps forwards
“−3”: jump 3 steps backwards
“(abc)”: jump to Step Label “abc” regardless of which Step No. “abc” is at.

By default, this instruction will wait until success, unless this parameter is specified.

<TimeoutSeconds>: specifies the timeout seconds. TimeoutSeconds must be surrounded by a pair of “<” and “>”. It is in additional to the sampling duration. By default, 10 seconds will be used unless this parameter is specified.

Example: Single Triggered Input {[5]<20>}

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>STI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration(s)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

DDPs to be captured

They define the DDPs to be obtained from the DAQ-related instruments after a frame of data is captured. The values of the DDPs will be displayed in these fields at runtime. In case the value is not available due to any reason (e.g. incorrect settings), then “NA” will be filled instead.

8.2.5.4 RPT

RPT (Repeat) is used to control the execution of steps in a test plan. It can be used to repeat a range of steps for a specified number of times. Note that a repetition loop should not contain or overlap with another repetition loop.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Repeat Step No. x for y times”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>RPT</td>
</tr>
</tbody>
</table>
| Duration(s) | Step No. | It specifies the Step No. to jump to. Only backward jump is allowed. A number without a sign indicates an absolute jump while a number with a preceding negative sign indicates a backward relative jump. Step Label can also be used.

Examples:
“3”: jump to Step 3
“−3”: jump 3 steps backwards
“(abc)”: jump to Step Label “abc” regardless of which Step No. “abc” is at.
Delay(s) | Repeat Times | It specifies the number of times to repeat (exclusive of the very first time). Note that a zero value means “repeat forever.”

A-Waveform | N.A. | This field will be used to indicate the number of times that has been repeated during runtime. It will be cleared after the repetition process finished.

A-Frequency(Hz) | N.A. | N.A.
A-Amplitude(V) | N.A. | N.A.
B-Waveform | N.A. | N.A.
B-Frequency(Hz) | N.A. | N.A.
B-Amplitude(V) | N.A. | N.A.
Phase Difference(D) | N.A. | N.A.
DDPs to be captured | N.A. | N.A.

8.2.5.5 LDP

LDP (Load Panel Setting File) is used to load a pre-stored Panel Setting File, in order to preset the parameters for DAQ and data analysis. When it is selected in the Instruction combo box, a File Open window will pop up requesting for the path and name of the Panel Setting File. It can also be set using the File Name button.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Load Panel Setting”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>LDP</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the Panel Setting File to be loaded.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>+1</td>
<td>This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, the file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
</tbody>
</table>

A-Waveform | N.A. | N.A.
A-Frequency(Hz) | N.A. | N.A.
A-Amplitude(V) | N.A. | N.A.
B-Waveform | N.A. | N.A.
B-Frequency(Hz) | N.A. | N.A.
B-Amplitude(V) | N.A. | N.A.
Phase Difference(D) | N.A. | N.A.
DDPs to be captured | N.A. | N.A.

8.2.5.6 LDF

LDF (Load File) is used to load a time-domain data file, either in WAV format or in TXT format (must has a file extension of txt), for analysis. It is usually used together with the exporting instructions for bath file processing. When it is selected in the Instruction combo box, a File Open window will pop up requesting for the path and name of the file. It can also be set using the File Name button.
Title in Process Viewer	**Title in Step Editor**	**Description**
Step | N.A. | Step number is assigned automatically.
Description | Description | You can enter a description that best describes this step. The default description is “Load WAV File”.
Instruction | Instruction | LDF
Duration(s) | File Name | It specifies the path and name of the time-domain data file to be loaded.
Delay(s) | +1 | This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, the file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.

A-Waveform | N.A. | N.A.
A-Frequency(Hz) | N.A. | N.A.
A-Amplitude(V) | N.A. | N.A.
B-Waveform | N.A. | N.A.
B-Frequency(Hz) | N.A. | N.A.
B-Amplitude(V) | N.A. | N.A.
Phase Difference(D) | N.A. | N.A.
DDPs to be captured | N.A. | N.A.

8.2.5.7 SVF

SVF (Save File) is used to save a WAV file. The file path and name can be specified by using the File Name button and/or the File Name edit box. If the specified file already exists, it will be overwritten without any warning message at runtime.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Save WAV File”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>SVF</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the WAV file to be saved.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>+1</td>
<td>This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, the file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
8.2.5.8 OET

OET (Oscilloscope Export TXT file) is used to export the data in the Oscilloscope to a TXT file. It is the same as the Export command in the Oscilloscope. The file path and name can be specified by using the File Name button and/or the File Name edit box. If the specified file already exists, it will be overwritten without any warning message at runtime.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Oscilloscope Export TXT File”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>OET</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the TXT file to be exported.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>+1</td>
<td>This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, The file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
</tbody>
</table>

A-Waveform	N.A.	N.A.
A-Frequency(Hz)	N.A.	N.A.
A-Amplitude(V)	N.A.	N.A.
B-Waveform	N.A.	N.A.
B-Frequency(Hz)	N.A.	N.A.
B-Amplitude(V)	N.A.	N.A.
Phase Difference(D)	N.A.	N.A.
DDPs to be captured	N.A.	N.A.

8.2.5.9 SET

SET (Spectrum Analyzer Export TXT file) is used to export the analysis result in the Spectrum Analyzer to a TXT file. It is the same as the Export command in the Spectrum Analyzer. The file path and name can be specified by using the File Name button and/or the File Name edit box. If the specified file already exists, it will be overwritten without any warning message at runtime.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Spectrum Analyzer Export TXT File”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>SET</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the TXT file to be exported.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>+1</td>
<td>This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, The file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
</tbody>
</table>
8.2.5.10 DLY

DLY (Delay) is used to pause the execution of the plan for a specified number of seconds.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
| Description | Description | You can enter a description that best describes this step. The default description is “Delay x Second(s)”.
| Instruction | Instruction | DLY |
| Duration(s) | Duration(s) | It specifies the number of seconds to wait before executing the next step. The value must be a multiple of 0.1 second. |
| Delay(s) | N.A. | This field will be used to indicate the number of seconds that has been delayed during runtime. It will be cleared after the step is finished. |
| A-Waveform | N.A. | N.A. |
| A-Frequency(Hz) | N.A. | N.A. |
| A-Amplitude(V) | N.A. | N.A. |
| B-Waveform | N.A. | N.A. |
| B-Frequency(Hz) | N.A. | N.A. |
| B-Amplitude(V) | N.A. | N.A. |
| Phase Difference(D) | N.A. | N.A. |
| DDPs to be captured | N.A. | N.A. |

8.2.5.11 JMP

JMP (Jump) is used to redirect the execution of the plan from the current step to a specified step.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>
| Description | Description | You can enter a description that best describes this step. The default description is “Jump to Step No. x”.
| Instruction | Instruction | JMP |
| Duration(s) | Step No. | It specifies the Step No. to jump to. A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used. Examples: “3”: jump to Step 3 |
8.2.5.12 CHK

CHK (Check) is used to evaluate the value of a specified Derived Data Point (refer to the relevant section in the chapter for Data Logger) against a preset value. If the specified condition is met, then jump to the specified Step, otherwise continue to execute the next step.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Check a derived data point. If the condition is TRUE, jump to Step No. x”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>CHK</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>Derived Data Point</td>
<td>It specifies the Derived Data Point to be evaluated with the following exception: 1. TimeStamp, current date and time (s). 2. UserInput, latest text input by the user using IPT instruction. 3. UserName, current user priority 4. TestResult, current test result: DONE=0, PASS=1, FAIL=-1 5. VolatileInt1VolatileInt5 and NonVolatileInt1NonVolatileInt5 6. ReceivedBytes_Array[?], an indexed byte in the received bytes by RCM instruction. “?” should be replaced by the actual array index starting from 0.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>Comparison Operator:</td>
<td>>=: greater than >=: greater than or equal to <: less than <=: less than or equal to ==: equal to !=: not equal to</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>Value</td>
<td>It specifies the value to be compared with</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>Step No.</td>
<td>It specifies the Step No. to jump to if the condition is met. A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used. Examples:</td>
</tr>
</tbody>
</table>
“3”: jump to Step 3
“+3”: jump 3 steps forwards
“-3”: jump 3 steps backwards
“(abc)”: jump to Step Label “abc” regardless of which Step No. “abc” is at.

<table>
<thead>
<tr>
<th>A-Amplitude(V)</th>
<th>Pass/Fail</th>
<th>If ticked, a Pass/Fail check will be performed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>The actual value of the specified Derived Data Point will be shown in this field at runtime.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>“Pass” will be indicated in this field if the specified condition is true, Otherwise “Fail” will be indicated.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

If the Derived Data Point is not available due to any reason (e.g. the settings are incorrect, etc.), the step will fail.

8.2.5.13 LOG

LOG is used to generate one textual record in the Device Test Plan Log window or a specified text file.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Log the Title, Derived Data Point Value, Comment”.</td>
</tr>
</tbody>
</table>

In addition to the description, it is possible to add optional parameters for this instruction. All these parameters should be put within a single pair of “{“ and “}”. Each parameter should also be surrounded by its own identification character pair. The supported optional parameters are:

[FileName]: specifies the path and name of the log file. Both an absolute path, e.g. C:\log\1.log, and a path relative to the software’s root directory, e.g. log\1.log, are supported. FileName must be surrounded by a pair of “[“ and “]”. By default, the Device Test Plan Log window will be used for output, unless this parameter is specified. The following formats are supported:

(1)[FileName]: a fixed file name. FileName can also be “Panel1”, “Panel2”, or “Panel3” which represents a textual display area in the Result window on the panel.

(2)[FileName, Date and Time Format, xxx] or [FileName, Date and Time Format]: a file name that changes automatically with date and time. Date and Time Format supported are: “YYYY-MM-DD-HH”, “YYYY-MM-DD”, “YYYY-MM” and “YYYY”. The date and time

www.virtins.com 321 Copyright © 2006-2018 Virtins Technology
will be automatically added at the end of the FileName but before "." if any. New files will be automatically created as time progresses. If the new file does not contain any header lines, then xxx should be "0" which means that the new file can start from the current step. If the new file contains 1 header line, xxx should be "1"; for non-header lines, xxx should not be specified. If the new file contains N header lines, for header line 1, xxx should be "1-N"; for header line 2, xxx should be "2-N"; for header line N, xxx should be "N-N"; for non-header lines, xxx should not be specified. If the new file contains 1 header line and it also shows up every N lines, then xxx should be "1/N". If a non-header line needs to show up every N lines, then xxx should be "/N".

The above mechanism ensures that every new file automatically created according to date and time starts from a correct position automatically in a test plan.

(3) [FileName, UserInput] or [FileName, UserInput, xxx]: a file name that changes with UserInput. UserInput must be "UserInput". xxx can be used if it shows up every N lines. In this case, xxx should be "/N". Header lines should not be defined through xxx as the test plan should know which step to create a new file.

(4) [FileName, UserName] or [FileName, UserName, xxx]: a file name that changes with UserName. UserName must be "UserName". xxx can be used if it shows up every N lines. In this case, xxx should be "/N". Header lines should not be defined through xxx as the test plan should know which step to create a new file.

(5) [FileName, (any combination of Date and Time Format, UserInput and UserName)] or [FileName, (any combination of Date and Time Format, UserInput and UserName), xxx], e.g. [C:\log\1.log, UserName-UserInput-YYYY-MM,1-3]

(Date and Time Format): Year: YYYY or YY; Month: MM; Day: DD; Hour:HH; Minute: mm; Second: SS. Date and Time format must be surrounded by a pair of "(" and ")". By default, the Date and Time Format is "YYYY-MM-DD HH:mm:SS", unless this parameter is specified.

<Record Separator>: specifies the separator between two consecutive records. Record Separator is surrounded by a pair of "<" and ">". By default, “Carriage Return” is used, unless this parameter is specified.

'RedValue, GreenValue, BlueValue': specifies
the RGB values for the color of the texts when
the target of this command (i.e. FileName) is
"Panel1", "Panel2", or "Panel3". RedValue,
GreenValue, BlueValue must be surrounded by
a pair of "'" and "'". Each value ranges from 0 to
255. For example, '0,0,0' represents black.
'255,0,0' represents red.

\texttt{/CodePage/}: specifies the code page of the texts.
Its value ranges from 1~7. 1-ANSI, 2-
Macintosh, 3-OEM, 4-Symbol, 5-Current
Thread's ANSI, 6-UTF-7, 7-Unicode. CodePage
must be surrounded by a pair of "|" and "|". By
default, UTF-8 is used, unless this parameter is
specified.

\texttt{/EngineeringUnit/}: specifies the engineering unit
of the DDP to be logged. EngineeringUnit must
be surrounded by a pair of "/" and "/". By
default, it is assigned by the software
automatically, unless this parameter is specified.
Use "//" if you do not want to log the unit.

Example: Log the Title, Derived Data Point
Value, Comment {[C:\log\1.log]
(YYYYMMDDHHmmSS)< >

If the file does not exist, a new file will be
created with new content. If the file exists, new
content will be appended at the end of the
existing file.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>LOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration(s)</td>
<td>Title</td>
<td>It is just a textual description, usually the title of the DDP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delay(s)</th>
<th>Derived Data Point</th>
<th>It specifies the Derived Data Point whose value to be logged with the following exception:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1. TimeStamp, current date and time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. UserInput, latest text input by the user using IPT instruction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. UserName, current user name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. TestResult, current test result: DONE, PASS, FAIL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. VolatileInt1VolatileInt5 and NonVolatileInt1NonVolatileInt5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A-Waveform</th>
<th>Comment</th>
<th>Any comment can be put here.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

8.2.5.14 END

END (End) is used to mark the end of a plan. It is especially useful when you want to
conditionally end the plan in the middle of steps.
8.2.5.15 IPT

IPT (Input) is used to get the user input through a pop-up dialog box containing only one text input field. The dialog box will be closed automatically, if the number of characters entered is within the range specified, upon receiving a Carriage Return. The input text can be accessed through the extended DDP point “UserInput”. It is especially useful when you want to read a DUT’s barcode with a barcode reader.

8.2.5.16 SEL

SEL (Selection) is used to get the user selection, Yes or No, through a pop-up dialog box. If Yes is selected, then jump to the specified Step, otherwise continue to execute the next step.
Virtins Technology

8.2.5.17 OPT

OPT (Operation) is used to perform mathematical operations on 5 volatile variables (VolatileInt1~VolatileInt5) and 5 non-volatile variables (NonVolatileInt1~NonVolatileInt5). These variables can be used for various purposes such as controlling a loop, counting PASS and FAIL, etc. VolatileInt1~VolatileInt5 are volatile integers. They are initialized to zero at the start of a test plan. NonVolatileInt1~NonVolatileInt5 are non-volatile integers. They are initialized through a CSV text file named “NonVolatile.txt” under the “dtp” directory. If the file does not exist, then they will be initialized to zero in the beginning. After that, any change of these non-volatile integers will be persisted in the file “NonValatile.txt” and only the Reset button can be used to manually reset them to zeros.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration(s)</td>
<td>Step No.</td>
<td>It specifies the Step No. to jump to if Yes is selected. A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used. Examples: “3”: jump to Step 3 “+3”: jump 3 steps forwards “-3”: jump 3 steps backwards “(abc)”': jump to Step Label “abc” regardless of which Step No. “abc” is at</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Description

OPT (Operation) is used to perform mathematical operations on 5 volatile variables (VolatileInt1~VolatileInt5) and 5 non-volatile variables (NonVolatileInt1~NonVolatileInt5). These variables can be used for various purposes such as controlling a loop, counting PASS and FAIL, etc. VolatileInt1~VolatileInt5 are volatile integers. They are initialized to zero at the start of a test plan. NonVolatileInt1~NonVolatileInt5 are non-volatile integers. They are initialized through a CSV text file named “NonVolatile.txt” under the “dtp” directory. If the file does not exist, then they will be initialized to zero in the beginning. After that, any change of these non-volatile integers will be persisted in the file “NonValatile.txt” and only the Reset button can be used to manually reset them to zeros.

Title in Process Viewer

Step

Description

You can enter a description that best describes this step. The default description is “Volatile/Non-Volatile variable +, -, *, /, or = x”.

Instruction

Instruction

OPT

Duration(s)

Derived Data Point

Only volatile integers: VolatileInt1~VolatileInt5 and non-volatile integers: NonVolatileInt1~NonVolatileInt5 are allowed

Delay(s)

Value

Five operations are allowed:

1. +x
2. –x
3. *x
4. /x
5. =x

where x is an integer. x can also be a DDP or extended DDP point, e.g [RMS, A(EU)]
CLR (Clear) is used to clear the intermediate test results such as PASS and FAIL, captured DDP values, etc., in the Process Viewer or Device Test Plan Log window. After this command, the Process Viewer will resume to the status when a plan is just loaded, and the Device Test Plan Log window will be cleared. The content in the window can be stored in a file on the hard disk before it is cleared.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR</td>
<td>CLR</td>
</tr>
</tbody>
</table>

The above two options can be used together to store the texts in the Device Test Plan Log window into a file on the hard disk and then clear the window.
8.2.5.19 OEB

OEB (Oscilloscope Export BMP file) is used to export the graph in the Oscilloscope to a BMP file. It is the same as the Export command in the Oscilloscope. The file path and name can be specified by using the File Name button and/or the File Name edit box. If the specified file already exists, it will be overwritten without any warning message at runtime.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Oscilloscope Export BMP File”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>OEB</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the BMP file to be exported.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>+1</td>
<td>This flag takes effect only when this step is within a repetition loop. The file name will “plus” one automatically in every repetition during runtime. To make it function correctly, the file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

8.2.5.20 SEB

SEB (Spectrum Analyzer Export BMP file) is used to export the graph in the Spectrum Analyzer to a BMP file. It is the same as the Export command in the Spectrum Analyzer. The file path and name can be specified by using the File Name button and/or the File Name edit box. If the specified file already exists, it will be overwritten without any warning message at runtime.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is “Spectrum Analyzer Export BMP File”.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Instruction</td>
<td>SEB</td>
</tr>
<tr>
<td>Duration(s)</td>
<td>File Name</td>
<td>It specifies the path and name of the BMP file to be exported.</td>
</tr>
</tbody>
</table>
| Delay(s) | +1 | This flag takes effect only when this step is within a repetition loop. The file name will
“plus” one automatically in every repetition during runtime. To make it function correctly, the file name should have at least one numerical digit at the end of the file before the file extension, e.g. xxx0.xxx, xxx888.xxx, etc.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

8.2.5.21 RCM

RCM (Read Communication port) is used to open, configure and read a communication port. If the command contains configuration parameters and the communication port has not been opened yet, then the port will be opened and configured, and then read, otherwise the command will read the port only. Once the port is opened, it will be closed only when the test plan is stopped or errors occur. The receiving buffer of the communication port will be purged first each time the command is executed. If the command is successful, the received data can be accessed through the extended DDP point “ReceivedBytes_Array[?]”.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
<tr>
<td>Description</td>
<td>Description</td>
<td>You can enter a description that best describes this step. The default description is "Read Communication Port".</td>
</tr>
</tbody>
</table>

 In addition to the description, it is possible to add optional parameters for this instruction. All these parameters should be put within a single pair of “{" and “}”. Each parameter should also be surrounded by its own identification character pair. The supported optional parameters are:

 (Port No., Baud Rate, Stop Bits, Parity, Byte Size): contains the communication port configuration parameters. They must be surrounded by a pair of “{" and “}” and the parameters must be separated by “,”.

 Stop Bits: 1,5,2 represent 1, 1.5 and 2 stop bits respectively.

 Parity: 0~4 represent no, odd, even, mark, space parity respectively.

 <BytesToReceive>: specifies the number of bytes to receive. BytesToReceive must be surrounded by a pair of “<” and “>”. This is a compulsory parameter.

 |TimeoutMiniSeconds, TimeoutStepNo| specifies Timeout in ms and Step No. to go to
when timeout error occurs. These two parameters must be surrounded by a pair of “|” and “|” and separated by “,”.

TimeoutStepNo: A number without a sign indicates an absolute jump, while a number with a preceding negative or positive sign indicates a backward or forward relative jump respectively. Step Label can also be used.

Examples:
“3”: jump to Step 3
“+3”: jump 3 steps forwards
“-3”: jump 3 steps backwards
“(abc)”: jump to Step Label “abc” regardless of which Step No. “abc” is at.

‘CheckSum’: specify the CheckSum type. “CRC” represents CRC-16. If the checksum of the received message is incorrect, the test plan will jump to TimeoutStepNo specified in the Timeout parameter session. CheckSum must be surrounded by a pair of “'” and “'”.

Example: Read Communication Port
\{(3,19200,1,0,8)<1>\}

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Instruction</th>
<th>RCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration(s)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Delay(s)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>A-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Waveform</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Frequency(Hz)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>B-Amplitude(V)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Phase Difference(D)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>DDPs to be captured</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

8.2.5.22 WCM

WCM (Write Communication port) is used to open, configure and write a communication port. If the command contains configuration parameters and the communication port has not been opened yet, then the port will be opened and configured, and then write, otherwise the command will write the port only. Once the port is opened, it will be closed only when the test plan is stopped or errors occur. The transmitting buffer of the communication port will be purged first each time the command is executed.

<table>
<thead>
<tr>
<th>Title in Process Viewer</th>
<th>Title in Step Editor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>N.A.</td>
<td>Step number is assigned automatically.</td>
</tr>
</tbody>
</table>
| Description | Description | You can enter a description that best describes this step. The default description is “Write Communication Port”.

In addition to the description, it is possible to add optional parameters for this instruction. All these parameters should be put within a single
The supported optional parameters are:

(Port No., Baud Rate, Stop Bits, Parity, Byte Size): contains the communication port configuration parameters. They must be surrounded by a pair of “(” and “)”. The supported optional parameters are:

Stop Bits: 1, 1.5, 2 represent 1, 1.5 and 2 stop bits respectively.

Parity: 0~4 represent no, odd, even, mark, space parity respectively.

(BytesToSend): specifies the bytes to send. Each byte is represented by two HEX characters. Multiple bytes are separated by empty spaces. BytesToSend must be surrounded by a pair of “[” and “]”. This is a compulsory parameter.

'CheckSum': specify the CheckSum type. “CRC” represents CRC-16. If this parameter is specified, the checksum byte(s) will be calculated and automatically appended at the end of the BytesToSend. CheckSum must be surrounded by a pair of “’” and “’”.

Example: Write Communication Port

```
{(3,19200,1,0,8)[01 F1 A0]}
```
8.2.6 Multi-Step Generation

For SIO and OUT instructions, the Step Editor provides a way to generate multiple steps in one shot if frequency or amplitude is the only parameter that varies among them. You need to enter the number of steps to be generated first in the “Steps” field, and then choose either frequency or amplitude as the variable, specify its varying range and incrementing method (linear or logarithmic) for each channel, press the “Insert” button in the end.

8.2.7 No Spectral Leakage

If this option is selected, you can further specify the Sampling Frequency of the Oscilloscope and the FFT size of the Spectrum Analyzer. The only use of these two parameters are to fine tune the output signal frequency to the nearest integer multiple of \([\text{Sampling Frequency of the Oscilloscope}] / [\text{FFT Size of the Spectrum Analyzer}],\) in order to avoid the spectrum leakage issue. For example, if the signal frequency you specify is 1 kHz, the Sampling Frequency of the Oscilloscope is 48 kHz, and the FFT Size of the Spectrum Analyzer is 16384, then the signal frequency will be changed to 999.0234375 Hz. Combing this option with the Multi-Step Generation function would be very useful if you want to design the test frequencies for THD vs Frequency plot.
8.3 Process Viewer

Process Viewer is used to view a test plan during its editing and running process. The first 12 columns are fixed and the rest of columns are the Derived Data Points to be captured which are configurable and only applicable to SIO and STI instructions. From the 4th column to the 12th column, each column may have different meanings for different instructions, and the displayed titles of these columns are only applicable to SIO instruction. Please refer to the instructions described previously for the actual meanings.

During the execution of a test plan, the current running step will be highlighted.

8.3.1 Context Menu

Process Viewer has its own context menu where additional functions can be accessed. The context menu pops up when you right click a step in the Process Viewer if the Device Test Plan is not running. There are three menu items in the context menu.

- Run From Here
 Unlike the Run/Stop button for plan execution which always starts from Step 1, this option allows you to start from any step chosen.

- Mark as PASS
 This option is available only if the step has already been marked as FAIL, e.g. as a result of a CHK instruction. You can overwrite the automated test result and mark it as PASS according to your own judgement using this command.

- Edit Step Label
 This option allows you to add, edit or remove Step Label. Step Label is used to label a particular step. Unlike Step No., it does not change when you add or delete a step in the test plan. It can be used in those instructions that have a Step No. as its parameter, such as CHK, JMP, and RPT. A dialog window with an edit box for input will pop up once this option is selected. You can then enter a label consisting of any characters. Each Step Label must be unique in a test plan. The Step Label will be automatically bracketed and put right behind the Step No.
do not need to enter the pair of brackets “(” and “)” manually. The Step Label will be removed if nothing is entered.

8.4 Result/Options Area

The left most read-only edit box (Result window) is used to display the test result, such as: “Pass”, “Fail”, “Done”, “…” (in progress). During a test plan execution, it will be marked as “…”. If the plan contains one or more Pass/Fail checks, the final result will be marked as “Pass” only if all the Pass/Fail checks succeed, otherwise it will be marked as “Fail”. If the plan contains no Pass/Fail check, it will be marked as “Done” after the plan is finished.

You can specify the Derived Data Points to be captured in a test plan and they are only applicable to those DAQ-related steps (i.e. SIO and STI). The values of these DDPs will be displayed in the Process Viewer from the 15th column onwards. You can also assign an alias for the DDP to make it more understandable. The alias will appear in the column title in the Process Viewer as well as the axis title in the X-Y Plot. Pressing “->” button will add the selected DDP into the list of data to be captured. Pressing “<->” button will remove the selected DDP from that list.

On the right hand side, there are two buttons: “Save Current Panel Setting as Default” and “Save Current Panel Setting”. The functionality of these two buttons is the same as that of the “Save Current Panel Setting as Default” and “Save Current Panel Setting” menu item described previously, except that the Device Test Plan panel will be automatically launched with the current device test plan loaded when the saved Panel Setting File is loaded.

8.4.1 User Log In / Off

It is possible to configure a user database and then allow user log in and log off. The user database is just a text file containing three comma separate variables for each user entry. The three variables are: user name, password, priority. The first two variables can consist of any characters, but the latest one can only be a character from “0” to “9”, with “0” being the highest priority. Each line in the file contains one user entry only. The file should be put in the software’s root directory and named as “Users.udb”. It can be edited by any text editor such as Windows Notepad and should be managed by the administrator. The following illustrates the format of the file.

NS3390,1234,0
NS3391,5678,0
NS3392,90ab,0
...

If the user database file (User.udb) exists and it contains at least one user entry, then the edit boxes for “User” and “Password” and the button for “Log In / Off” will become visible at the lower right corner of the Result/Options area.
If the user database file (User.udb) exists, then only a user with a priority equal to “0” is allowed to edit a plan and reset those non-volatile integers.

8.4.2 Non Volatile Variable Reset

The Reset button is used to reset those non-volatile integers (NonVolatile1~NonVolatile5) persisted in the CSV text file “NonVolatile.txt” under “dtp” directory.

8.4.3 Expanded Result Window at Runtime

The Result window will expand to the right at runtime in order to allow more space for programmed display. It is split into four areas as shown below: Panel, Panel1, Panel2 and Panel3. The texts and their colors in Panel1, Panel2 and Panel3 are controllable by the instruction LOG. Each Panel can accommodate one line only. Concatenation of texts can be achieved using a <Record Separator> rather than the default Line Feed + Carriage Return.

8.5 Control Bar

The above control bar contains (from left to right):

- Four radio boxes allow you to choose to show Control, show Control+Result, show Control+Result+Process, or show Control+Result+Process+Editor.

- File Open button ![Icon] is used to load a device test plan. The path and file name of the plan will be displayed in the title bar of the Device Test Plan panel.

- File Save button ![Icon] is used to save the current device test plan. Not only the content of the device test plan but also the parameters of the X-Y plots and Device Test Plan Log will be saved.

- File Save & Lock ![Icon] button is used to save the current device test plan as a locked plan. A locked plan is not editable when reloaded and the “Editor” radio box will be disabled. This feature is useful when the test plan is configured by an engineer and operated by an operator.

- X combo box for selecting the variable for X axis.
The first five variables (i.e. Frequency of Channel A, Amplitude of Channel A, Frequency of Channel B, Amplitude of Channel B, Phase difference between Channel A and Channel B) are pre-fixed and are always available for selection. The rest variables will be shown in the list only if they are configured in the “data to be captured” list.

- Y combo box for selecting the variable for Y axis.

The available variables in the list are the same as those in the X combo box.

- X-Y Plot button is used to open a new X-Y plot window. Maximum eight X-Y Plot windows can be opened. And these plots will be updated in real time.

- Device Test Plan Log button is used to open the Device Test Plan Log window. One line of texts will be logged into this window each time when the instruction LOG is executed.

- Windows Recording Control button

- Windows Volume Control button

- Pause button for plan execution

- Single Step button for plan execution

- Run/Stop button for plan execution

8.6 X-Y Plot

X-Y Plot is used to display the result of a test plan. It can be opened before, in the middle, or after the execution of the test plan.
8.6.1 Context Menu

X-Y Plot does not have its own menu and view parameter toolbar. Its functions are accessed via its context menu. The context menu pops up when you right click anywhere within the X-Y Plot window.

8.6.1.1 X Scale

The X Scale dialog can be accessed via the context menu or by double clicking on X axis of the plot. You can specify the range of X axis and choose between linear or logarithmic scales. Note that the software will disallow logarithmic scale if the range covers negative or zero values.

8.6.1.2 Y Scale
The Y Scale dialog can be accessed via the context menu or by double clicking on Y axis. You can specify the range of Y axis and choose between linear or logarithmic scales. Note that the software will disallow logarithmic scale if the range covers negative or zero values.

8.6.1.3 Chart Options
Same as Oscilloscope.

8.6.1.4 Reference

Same as Oscilloscope except that only one channel of data is available.

8.6.1.5 Copy As Bitmap

Same as Oscilloscope

8.6.1.6 Copy As Text

Same as Oscilloscope

8.6.1.7 Export

Same as Oscilloscope

8.6.1.8 Print

Same as Oscilloscope
8.6.2 Cursor Reader and Marker

Similar to those in the Oscilloscope, except that the cursor reader and marker mark the point exactly at the point of mouse click rather than sticking to the nearest measurement point.

8.7 Device Test Plan Log

Device Test Plan Log can be used to log the test results or generate a test report. It should be used with the instruction LOG.

Two buttons are available at the bottom of the log:

- File Save
 To save the logged data.

- Run/Stop button for plan execution
 It has the same functionality as the one in the Device Test Plan main window.

8.8 Device Test Plan Examples

Some sample test plans are provided in the DTP directory of the software and can be used as templates. The following are four examples.

8.8.1 Transfer Function Measurement using Frequency Stepped Sine Signal

The following figure illustrates the transfer function (i.e. Gain and Phase Plot, or Bode Plot) of a 5513 Hz second order Butterworth low pass filter, measured using a
frequency stepped sine stimulus, with the stimulus data stored in Channel B and the response data stored in Channel A. It shows that the gain maintains at nearly 0 dB from 0 Hz to about 5513 Hz, and then start to drop down very quickly, meanwhile the phase changes gradually from 0 degree at 0 Hz towards –180 degree as the frequency goes to infinity. At the cutoff frequency 5513 Hz, the gain is about –3 dB and the phase is about –90 degree.

The sample DTP files are at:
1) `\dtp\SteppedSineFrequencyResponseMeasurement.dtp`
2) `\dtp\SteppedSineFrequencyResponseMeasurement_Demo.dtp`

8.8.2 Pass/Fail Test

The following figure illustrates a Pass/Fail test on magnitude frequency response using a stepped sine signal. The measured RMS voltage values (blue) at the specified frequencies are checked against the preset high and low limits at those frequencies in order to determine “Pass” or “Fail”. The high (red) and low (black) limits are also loaded as reference in the X-Y Plot. The final result is displayed as “Pass” only if all limit checks have been passed.

The sample DTP file is at: `\dtp\HighLowLimit.dtp`
8.8.3 THD+N, THD, SNR, Magnitude vs Frequency Plots

The following figure shows the THD+N, THD, SNR, Magnitude vs Frequency Plots measured using frequency stepped sine signals. The frequency of the test signal increases step by step logarithmically from 20 Hz to 20 kHz while its amplitude is kept constant such that the input peak level is at around –1 dBFS. The test frequencies are fine tuned using the aforementioned “No Spectral Leakage” option to avoid the spectral leakage issue. The THD calculation range is set to 10 Hz ~ 20 kHz and up to the 5th harmonic frequencies is taken into account in THD. This means that, for the fundamental frequency 20 Hz, only its harmonic frequencies 40 Hz, 60 Hz, 80Hz and 100 Hz are used in the THD calculation; for the fundamental frequency 4 kHz, only its harmonics frequencies 8 kHz, 12 kHz, 16 kHz and 20 kHz are used; but for a fundamental frequency higher than 4 kHz, only those harmonic frequencies less than 20 kHz, i.e. less than the 5th order, are used. Therefore only the THDs in the frequency range from 20 Hz to 4 kHz are comparable because the same order of harmonic frequencies is used in their THD calculation. On the other hand, THD+N values are comparable in the full frequency range from 20 Hz to 20 kHz. The plot at the upper left corner is the THD+N vs Frequency plot; the plot at the upper right corner is the THD vs Frequency plot; the plot at the bottom left corner is the SNR vs Frequency plot; the plot at the bottom right corner is the Magnitude vs Frequency plot. Note that, although the magnitude of the signal output towards the DUT is kept constant, the magnitude of the response signals output by the DUT may vary with frequency. Therefore the Magnitude vs Frequency plot actually reflects the magnitude frequency response of the DUT.

The sample DTP is at: `\dtp\THD+N_THD_SNR_Magnitude_vs_Frequency.dtp`
8.8.4 THD+N, THD vs Magnitude, Power Plots

The following figure shows the THD+N, THD, vs Magnitude, Power Plots measured using amplitude stepped sine signals. The amplitude of the test signal increases step by step linearly from 0.1 V to 1 V while its frequency is kept constant at 999.0234375 Hz. The frequency is fine tuned using the aforementioned “No Spectral Leakage” option to avoid the spectral leakage issue. The THD calculation range is set to 10 Hz ~ 20 kHz. The plot at the upper left corner is the THD+N vs RMS voltage plot; the plot at the upper right corner is the THD vs RMS voltage plot; the plot at the bottom left corner is the THD+N vs Power plot; the plot at the bottom right corner is the THD vs Power plot. Note that, the power value is obtained from the Derived Data Point PWR_A(W), which is equal to [RMS Voltage]² / [Load Factor], where the load factor is set via [Setting]>[Calibration]> “Load Factor for Power Calculation”. For better measurement accuracy, it is recommended the input peak level should not be lower than –20 dBFS during the amplitude sweep.

The sample DTP is at: \dtp\THD+N_THD_vs_Magnitude_Power.dtp.
8.8.5 SMPTE IMD vs Magnitude, Power Plots

The following figure shows the SMPTE IMD vs Magnitude, Power Plots measured using amplitude stepped SMPTE sine signals (60 Hz + 7kHz, Amplitude Ratio 4: 1). The amplitude of the test signal increases step by step linearly from 0.1 V to 1 V. The upper plot is the SMPTE IMD vs RMS voltage plot; the lower plot is the SMPTE IMD vs Power plot. Note that, the power value is obtained from the Derived Data Point PWR_A(W), which is equal to [RMS Voltage]^2 / [Load Factor], where the load factor is set via [Setting]>[Calibration]> “Load Factor for Power Calculation”. For better measurement accuracy, it is recommended the input peak level should not be lower than –20 dBFS during the amplitude sweep.

The sample DTP is at: \dtp\SMPTE_IMD_vs_Magnitude_Power.dtp.
8.8.6 Crosstalk vs Frequency Plots

The following figure shows the Crosstalk vs Frequency Plot measured using frequency stepped sine signals. The frequency of the test signal increases step by step logarithmically from 20 Hz to 20 kHz while its amplitude is kept constant such that the input peak level is at around –1 dBFS. The test frequencies are fine tuned using the aforementioned “No Spectral Leakage” option to avoid the spectral leakage issue.
The sample DTP is at: `\dtp\Crosstalk_vs_Frequency.dtp`.

8.8.7 Automated Audio Parameter Test

The test is to measure THD, THD+N, THD+N (A-Weighted), SNR, SNR (A-Weighted), SMPTE IMD, DIN IMD, CCIF2 IMD, CCIF3 IMD, Crosstalk, and -3dB Bandwidth automatically through a sequence of automated steps. The test results will be summarized in the log window. The following criteria are used to evaluate the results. The test can be used to evaluate a sound card’s own audio performance through the loopback test. It can also be used to measure a device’s audio parameters automatically when the test setup’s own audio performance is one order better than the device under test.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Average</th>
<th>Poor</th>
<th>Very Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td><=0.003%</td>
<td><=0.03%</td>
<td><=0.3%</td>
<td><3%</td>
<td><=10%</td>
<td>>10%</td>
</tr>
<tr>
<td>THD+N</td>
<td><=0.005%</td>
<td><=0.05%</td>
<td><=0.5%</td>
<td><5%</td>
<td><=20%</td>
<td>>20%</td>
</tr>
<tr>
<td>THD+N (A-Weighted)</td>
<td><=0.004%</td>
<td><=0.04%</td>
<td><=0.4%</td>
<td><4%</td>
<td><=15%</td>
<td>>15%</td>
</tr>
<tr>
<td>SNR</td>
<td>>=110 dB</td>
<td>>=90 dB</td>
<td>>70 dB</td>
<td>>=50 dB</td>
<td>>=30 dB</td>
<td><30 dB</td>
</tr>
<tr>
<td>SNR (A-Weighted)</td>
<td>>=115 dB</td>
<td>>=95 dB</td>
<td>>75 dB</td>
<td>>=55 dB</td>
<td>>=35 dB</td>
<td><35 dB</td>
</tr>
<tr>
<td>SMPTE IMD</td>
<td><=0.003%</td>
<td><=0.03%</td>
<td><=0.3%</td>
<td><3%</td>
<td><=10%</td>
<td>>10%</td>
</tr>
<tr>
<td>DIN IMD</td>
<td><=0.003%</td>
<td><=0.03%</td>
<td><=0.3%</td>
<td><3%</td>
<td><=10%</td>
<td>>10%</td>
</tr>
<tr>
<td>CCIF2 IMD</td>
<td><=0.003%</td>
<td><=0.03%</td>
<td><=0.3%</td>
<td><3%</td>
<td><=10%</td>
<td>>10%</td>
</tr>
<tr>
<td>CCIF3 IMD</td>
<td><=0.003%</td>
<td><=0.03%</td>
<td><=0.3%</td>
<td><3%</td>
<td><=10%</td>
<td>>10%</td>
</tr>
<tr>
<td>Crosstalk</td>
<td><=-110 dB</td>
<td><=-90 dB</td>
<td><=-70 dB</td>
<td><=-50 dB</td>
<td><=-30 dB</td>
<td>>-30 dB</td>
</tr>
</tbody>
</table>
The sample DTPs are at:
\dtp\AudioParameter_SR44100_A.dtp
\dtp\AudioParameter_SR44100_AB.dtp
\dtp\AudioParameter_SR48000_A.dtp
\dtp\AudioParameter_SR48000_AB.dtp
9 LCR Meter

9.1 Overview

LCR Meter is one of the dedicated test plans. It is used to measure the value of an inductor, a capacitor or a resistor, or the impedance of a network of them. Two types of external connections are supported:

- Serial connection for high impedance measurement
- Parallel connection for low impedance measurement

An external reference resistor \(R_r \) is required in both cases. In the former one, the reference resistor \(R_r \) is in series to the sound card input impedance \(Z_{sc} \), and in the latter one, \(R_r \) is parallel to \(Z_{sc} \).

The screen layout of the LCR Meter is similar to that of the Device Test Plan and the difference will be described in the following sections.

9.2 Step Editor

By default, the LCR Meter will load predefined locked dedicated test plans, therefore the Step Editor will always be disabled. However, you are allowed to save a locked test plan as an unlocked test plan and subsequently load it for editing. In such case, the Step Editor will be shown.

9.3 Progress Viewer

As a dedicated test plan, the LCR Meter has unique content in the Progress Viewer from the 13th column onwards. They are:
<table>
<thead>
<tr>
<th>Column Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zsc (k)</td>
<td>Sound Card Input Impedance (kΩ)</td>
</tr>
<tr>
<td>Rr1 (k)</td>
<td>Reference Resistor Value (kΩ) used in Step 1</td>
</tr>
<tr>
<td>Zx1 (k)</td>
<td>Always be zero (kΩ) because Zx should not be connected in this step</td>
</tr>
<tr>
<td>Vi1 (V)</td>
<td>RMS voltage (V) measured in Channel A in Step 1</td>
</tr>
<tr>
<td>PeakPercent1</td>
<td>Peak level percentage measured in Channel A in Step 1</td>
</tr>
<tr>
<td>Rr2 (k)</td>
<td>Reference Resistor Value (kΩ) used in Step 2</td>
</tr>
<tr>
<td>Zx2 (k)</td>
<td>Measured impedance value (kΩ) in Step 2</td>
</tr>
<tr>
<td>Vi2 (V)</td>
<td>RMS voltage (V) measured in Channel A in Step 2</td>
</tr>
<tr>
<td>PeakPercent2</td>
<td>Peak level percentage measured in Channel A in Step 2</td>
</tr>
</tbody>
</table>

The above columns will be filled with the actual values by the software automatically as the process goes. However, if there are exceptions encountered, they will be filled with one of the following texts instead:

“NA”-----Not Available/Not Applicable
“BAD”---The quality of the test tone is considered as bad if the peak level measured in Channel A exceeds 99.9% or the THD value measured in Channel A exceeds 3%, in which case, you should adjust the output level, the reference resistor value, or the input gain.

If the value is currently unknown and is to be measured, then the field will be filled with “?”. The meaning of each of the above columns will be further explained in the following sections.

9.4 Result/Options Area

The left most read-only edit box (Result window) is used to display the test result. In Step 1 (Set test tone reference level), it displays the peak level percentage at each test frequency. In Step 2 (Test with DUT), it displays the measured impedance value of the DUT. You can choose to display the impedance as inductance, capacitance, or resistance, by selecting the corresponding radio boxes “L”, “C”, “R”. The measurement range is also indicated. Adjusting the reference resistor value will change the measurement range.

In the right part of this area, you can choose between High Impedance Measurement method or Low Impedance Measurement method. The corresponding mimic connection diagram will then be enabled. Details of these two methods will be described later.

9.5 Control Bar

Same as that in the Device Test Plan. The File Open, File Save, File Save & Lock buttons are still enabled to allow advanced users to modify the default LCR test plans.
However, it should be noted that the LCR meter may function incorrectly if a non-LCR test plan is used.

9.6 High Impedance Measurement

High Impedance Measurement uses the sound card input impedance as one of the reference resistor. Thus, to enable this type of measurement, the sound card input impedance, which is sound card dependent, must be calibrated first. After calibration, the LCR Meter will be able to display the measurement range based on the reference resistor value and the test frequency used. The software uses 1% and 99% variation from the test tone reference level to suggest the measurement range, within which good measurement accuracy can be achieved. This is similar to the case of resistor measurement using an analog multimeter whereby the middle region of the swing of the needle has good measurement accuracy.

The procedure to make a LCR measurement is also similar to the procedure to measure a resistor using an analog multimeter, as shown as follows.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>LCR Meter Implementation</th>
<th>Analog Multimeter Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Choose a proper measurement range</td>
<td>By connecting a proper reference resistor Rr and enter the corresponding value in the Rr combo box on the screen. Then start the plan.</td>
<td>Via the switch which switches to a corresponding reference resistor inside the multimeter</td>
</tr>
<tr>
<td>1</td>
<td>Set the test tone reference level such that the maximum allowable level is reached to ensure sufficient measurement accuracy</td>
<td>By shorting the two test leads and then adjusting the output level via Windows Volume Control, and/or the input gain via Windows Recording Control. A peak level above 85% is recommended.</td>
<td>By shorting the two test leads and then adjusting the zeroing potentiometer such that the needle points to zero ohms.</td>
</tr>
<tr>
<td>2</td>
<td>Connect the DUT and make the measurement. You can repeat this step to test other DUTs as long as there is no need to change the measurement range.</td>
<td>By connecting the DUT between the two test leads and choose Step 2 radio box on the screen</td>
<td>By connecting the DUT between the two test leads</td>
</tr>
</tbody>
</table>

9.6.1 Connection for High Impedance Measurement

The connection diagram for high impedance measurement is shown as follows.
where:
Rr is the reference resistor.
Zx is the impedance to be measured.
Zsc is the sound card input impedance
Vo is the output RMS voltage.
Vi is the input RMS voltage.

Rr, Zx and Zsc form a voltage divider and thus we have \(\frac{Vi}{Vo} = \frac{Zsc}{Rr+Zx+Zsc} \). This connection should be used for high impedance measurement where Zx is comparable to or higher than Zsc. **It should be noted that the sound card output impedance, which typically ranges from nearly zero ohm to a few ohms for Speaker/Headphone Out, is ignored in the above formula. This simplification has negligible effect on the measurement accuracy as long as the output impedance is negligibly small compared with the value of Rr+Zx+Zsc, which holds true in almost all cases. It can be taken into account by simply adding its value (if it is known) to the value of Rr.**

Zsc is typically in the range of 600 \(\Omega \) to 50 k\(\Omega \), depending on the sound card and channels (MIC In or Line In) used. It must be calibrated before you can start the real LCR measurements. The calibration data can be saved so that you do not have to calibrate it again as long as the same sound card is used. In the Zsc combo box, two options are available: “?” and “Zsc”. Choose “?” if you want to conduct Zsc calibration, and choose “Zsc” if you want to conduct a normal LCR measurement. Only “?” will be available if the software cannot find any calibration data in the current software directory. This is to force you to conduct Zsc calibration first.

Rr is an external reference resistor. You need to find the resistor and make the connection by yourself. An easier way is to use two VIRTINS Sound Card Oscilloscope Probes (P601), one connected to the input jack of the sound card and the other connected to the output jack of the sound card. Then you can connect the
inductor/capacitor/resistor to be measured between them easily (see figure below, you do not have to connect the ground lead if they are connected within the sound card itself). The impedance of the probes will act as the reference resistor. Note that for VIRTINS Sound Card Oscilloscope Probe (P601), the input impedance is 1 kΩ, 201 kΩ and 10.001 MΩ for switch position 1, 2 and 3 respectively. In the Rr combo box, you should enter the actual value (in kΩ) you used. Different test steps or different measurement ranges desired may require different resistor values.

Some pre-configured resistance values are available for selection, most of them are relevant to the case where two VIRTINS Sound Card Oscilloscope Probes (P601) are used as both the test leads and reference resistor.

<table>
<thead>
<tr>
<th>Options</th>
<th>Resistance (kΩ)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Two zero-resistance test leads are used.</td>
</tr>
<tr>
<td>1_[P1]</td>
<td>1</td>
<td>One VIRTINS Sound Card Oscilloscope Probe and one zero-resistance test lead are used. The probe is in Position 1.</td>
</tr>
<tr>
<td>2_[P1+P1]</td>
<td>2</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used. Both of them are in Position 1.</td>
</tr>
<tr>
<td>201_[P2]</td>
<td>201</td>
<td>One VIRTINS Sound Card Oscilloscope Probe and one zero-resistance test lead are used. The probe is in Position 2.</td>
</tr>
<tr>
<td>202_[P2+P1]</td>
<td>202</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used, one in Position 2 and the other in Position 1.</td>
</tr>
<tr>
<td>402_[P2+P2]</td>
<td>402</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used. Both of them are in Position 2.</td>
</tr>
<tr>
<td>10001_[P3]</td>
<td>10001</td>
<td>One VIRTINS Sound Card Oscilloscope Probe and one zero-resistance test lead are used. The probe is in Position 3.</td>
</tr>
<tr>
<td>10002_[P3+P1]</td>
<td>10002</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used, one in Position 3 and the other in Position 1.</td>
</tr>
<tr>
<td>10202_[P3+P2]</td>
<td>10202</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used, one in Position 3 and the other in Position 2.</td>
</tr>
<tr>
<td>20002_[P3+P3]</td>
<td>20002</td>
<td>Two VIRTINS Sound Card Oscilloscope Probes are used. Both of them are in Position 3.</td>
</tr>
</tbody>
</table>

If you are not using the above values, then you have to enter the resistance value manually. For advanced users, if you have your own set of reference resistors, you can modify the TXT file named “ResistorRef1.txt” under the software root directory so that your can have your own set of reference resistor values available in the Rr combo box. In the following sections, to simplify the explanation of the measurement procedure, we will assume that two VIRTINS Sound Card Oscilloscope Probes are used. But bear in mind that you can always use your own test leads and reference resistors.
Zx is the impedance to be measured. When “?” is chosen in the Zsc combo box, the Zx combo box will always display “0”, which means during Zsc calibration, Zx should not be connected. When “Zsc” is chosen in the Zsc combo box, the Zx combo box will display “0” for Step 1 and “?” for Step 2. In other word, only the last step of the actual LCR measurement requires Zx to be connected.

9.6.2 Calibration of Sound Card Input Impedance

The software does not assume Zsc is a constant with regard to frequency. Thus the value of Zsc should be calibrated against a number of frequencies covering the entire range within which the test frequencies will be chosen. During the actual LCR measurement, the actual Zsc values at the actual test frequencies will be interpolated from the calibration result. To avoid the interpolation error, use the same frequencies during calibration and actual measurement.

The procedure to calibrate Zsc is similar to the procedure to make a LCR measurement. You need to take two steps to complete the calibration.

9.6.2.1 Step1---Set Test Tone Reference Level

To start the calibration, you need to choose “?” in the Zsc combo box. It is automatically chosen if this is the first time you conduct the calibration. Then, a locked dedicated test plan named Zscdefault.dtp will be automatically loaded (see figure above). By factory default, this plan will measure the Zsc values at 50 Hz, 100 Hz, 200 Hz, 500 Hz, 1000 Hz, 2000 Hz, 5000 Hz, 10000 Hz, 20000 Hz.

“Step 1-Set test tone reference level” should be selected. The purpose of this step is to set the test tone reference level which is similar to the zeroing step when you want to measure a resistor using an analog multimeter. The reference level should be set as high as possible in order to get sufficient measurement accuracy provided no signal clipping occurs.
Before you start the test plan, make sure the test loop is connected correctly and the Rr value in the Rr combo box corresponds to the actual value used. For this step, a relatively low (compared with the one in the next step) Rr value should be used. The value can be zero. In the example, we used 2_P1+P1\ (=2 k\Omega) for convenience purpose.

Zx is bypassed and its value is zero.

Once the test plan is started, it will generate each test frequency one by one and display the corresponding peak level in the PeakPercent1 column as well as the Result window. After finishing the last test frequency, it will go back to the first test frequency again and repeat this process until the plan is stopped manually. During this process, you should adjust the output level and input gain using the Windows Volume Control and Recording Control such that the maximum peak level among all test frequencies is close to 100% without any clipping. You may have to change the Rr value if the peak levels are too low.

Having set the desired test tone level, press the Start/Stop button to stop the plan.

9.6.2.2 Step2---Test with DUT (Zsc)

Keep the test tone reference level intact, then choose “Step 2-Test with DUT”. The DUT in this step is in fact Zsc. The value of Rr must be changed in this step. In the example, we changed it to 202_P2+P1\ (=202 k\Omega).

Once the test plan is started, it will generate each test frequency one by one and display the corresponding Zsc value measured in the Zsc column as well as the Result window. After finishing the last test frequency, it will go back to the first test frequency again and repeat this process until the plan is stopped manually. The output level and input gain set in the previous step must be maintained in this step.
You should press the File Save button beside “Zsc” to save the calibration result as default.

9.6.2.3 Save, Save As, Open a Zsc calibration file

The File Open button beside “Zsc” can be used to load a sound card impedance file (*.zsc).

The File Save button beside “Zsc” is used to save the current calibration data to the default sound card impedance file named default.zsc. The LCR Meter refers to this file for the value of Zsc by default. You can use the File Open button to load a non-default Zsc calibration file if necessary.

The File Save As button beside “Zsc” is used to save the current calibration data to a specified sound card impedance file.

The path and name of the current sound card impedance file in use, if any, is displayed below the above three buttons.

9.6.3 Make a LCR Measurement

As described previously, the procedure to make a LCR measurement is similar to the procedure to measure a resistor using an analog multimeter. You need to take two steps to complete a measurement at first, and then the first step can be skipped if the measurement range has not been changed.

9.6.3.1 Step1--- Set Test Tone Reference Level

To start the actual measurement, you need to choose “Zsc” in the Zsc combo box. Then, a locked dedicated test plan named LCRdefault.dtp will be automatically loaded (see figure below). By factory default, this plan will measure the Zx values at 1000 Hz only.

Then choose a proper measurement range by connecting a proper reference resistor Rr and enter the corresponding value in the Rr combo box on the screen. Then short the two test leads to bypass Zx, select Step 1, start the plan and adjust the output level via Windows Volume Control, and/or the input gain via Windows Recording Control, in order to set the test tone reference level such that the maximum allowable level is reached to ensure sufficient measurement accuracy. A peak level above 85% is recommended. Stop the plan after the test tone reference level is set.

In the following example, we used 2 [P1+P1] (=2 kΩ) for Rr and the peak level at the test frequency (1000 Hz) was set to 97.02%.
9.6.3.2 Step2---Test with DUT

Keep the test tone reference level intact, connect the DUT (Zx) between the two test leads, select Step 2 and start the plan. The impedance value measured will then be displayed in the Result window and Zx2 column.

In the following example, we used 200 kΩ resistor with a tolerance value of 1% for Zx, and the measured value was 199.484 kΩ, which is very accurate. Note that the sound card input and output impedance here were about 50 kΩ and 100 Ω respectively and the output impedance was ignored without any compensation.

If Zx is a capacitor with the same impedance value at 1000 Hz, then the capacitance would be 797.831 pF.
If Zx is an inductor with the same impedance value at 1000 Hz, then the inductance would be 31.749 H.

9.7 Low Impedance Measurement

Low Impedance Measurement is used to measure impedance in a lower range. The reference resistor is placed in parallel to the sound card input impedance, and if its value is much lower than the sound card input impedance, which holds true in most of cases, the sound card input impedance can be ignored. Thus, it is not necessary to calibrate the sound card input impedance before measurement. However, if the default sound card input impedance file exists or a sound card input impedance file has been loaded, the sound card input impedance will be automatically taken into account for better accuracy.
The LCR Meter will be able to display the measurement range based on the reference resistor value and the test frequency used. The software uses 1% and 99% variation from the test tone reference level to suggest the measurement range, within which good measurement accuracy can be achieved. This is similar to the case of resistor measurement using an analog multimeter whereby the middle region of the swing of the needle has good measurement accuracy.

The procedure to make a LCR measurement is also similar to the procedure to measure a resistor using an analog multimeter, as described previously.

9.7.1 Connection for Low Impedance Measurement

The connection diagram for low impedance measurement is shown as follows.

![Connection Diagram](image)

where:
- Rr is the reference resistor.
- Zx is the impedance to be measured.
- Zsc is the sound card input impedance.
- Vo is the output RMS voltage.
- Vi is the input RMS voltage.

(Rr|Zsc) and Zx form a voltage divider and thus we have $Vi/Vo = (Rr/Zsc)/((Rr|Zsc)+Zx)$, where (Rr|Zsc) is the resultant resistance when Rr and Zsc are connected in parallel. It should be noted that the sound card output impedance, which typically ranges from nearly zero ohm to a few ohms for Speaker/Headphone Out, is ignored in the above formula. This simplification has negligible effect on the measurement accuracy as long as the output impedance is negligibly small compared with the value of Zx+(Rr|Zsc), which holds true in most of cases.
Rr is an external reference resistor. You need to find the resistor and make the connection by yourself. In the Rr combo box, you should enter the actual value (in kΩ) you used. Different measurement ranges requires different reference resistor values. Some pre-configured resistance values are available for selection: 0.01 k, 0.1 k, 1.0 k.

If you are not using the above values, then you have to enter the resistance value manually. For advanced users, if you have your own set of reference resistors, you can modify the TXT file named “ResistorRef2.txt” under the software root directory so that your can have your own set of reference resistor values available in the Rr combo box.

Zx is the impedance to be measured. The Zx combo box will display “0” for Step 1 and “?” for Step 2. In other word, in Step 1, Zx should be bypassed and in Step 2, Zx should be connected.

9.7.2 Make a LCR Measurement

As described previously, the procedure to make a LCR measurement is similar to the procedure to measure a resistor using an analog multimeter. You need to take two steps to complete a measurement at first, and then the first step can be skipped if the measurement range has not been changed.

9.7.2.1 Step1--- Set Test Tone Reference Level

Choose a proper measurement range by connecting a proper reference resistor Rr and enter the corresponding value in the Rr combo box on the screen. Then, short the two test leads to bypass Zx, select Step 1, start the plan and adjust the output level via Windows Volume Control, and/or the input gain via Windows Recording Control, in order to set the test tone reference level such that the maximum allowable level is reached to ensure sufficient measurement accuracy. A peak level above 85% is recommended. Stop the plan after the test tone reference level is set.

In the following example, we used a 1kΩ resistor for Rr and the peak level at the test frequency (1000 Hz) was set to 98.33%.
9.7.2.2 Step2---Test with DUT

Keep the test tone reference level intact, connect the DUT (Zx) between the two test leads, select Step 2 and start the plan. The impedance value measured will then be displayed in the Result window and Zx2 column.

In the following example, we used 20 Ω resistor with a tolerance value of 1% for Zx, and the measured value was 20.064 kΩ, which is very accurate. Note that the sound card input and output impedance here were about 50 kΩ and 100 Ω respectively and the output impedance was ignored without any compensation.

9.8 Measurement Accuracy
The following points should be noted in order to achieve high accuracy in LCR measurements:

- High-precision reference resistor should be used.
- Use a sound card with low output impedance.
- Set measurement range correctly. Change the reference resistor value or the test frequency will change the range of measurement. The highest measurement accuracy is expected if the peak level in Step 2 is half of that in Step 1 and the peak level in Step 1 is close to 100%. This is similar to the case of measuring a resistor using an analog multimeter whereby the middle of the needle swing range has the highest measurement accuracy.

On the other hand, the frequency response of the sound card does not affect the accuracy in LCR measurements. Also, calibration of the sound card input and output channels is not required here.

9.9 Measurement with Multiple Test Frequencies

If you configure a LCR test plan with multiple test frequencies in multiple test steps, the averaged resistance, capacitance or inductance value will be displayed in the Result window. Some sample LCR test plans beside the default one for LCR measurements are provided under the DTP (Device Test Plan) directory of the software. These test plans (with prefix “LCR” in their file names) are configured with different test frequencies which allow you the set different measurement ranges without changing the reference resistor.

The following figure shows a measurement of a capacitor using multiple test frequencies. The X-Y Plot illustrates its impedance variation with regard to frequency.
10 DDP Viewer

10.1 Overview

DDP viewer is used to display the value of a DDP (Derived Data Point) in a dedicated window with bigger font size. It is also possible to specify the DDP’s high-high, high, low, low-low limits for alarming and the number of decimal places for display. Different alarm sounds can be configured for different types of alarms. Alarm acknowledgement is supported. Up to 16 DDP viewers can be opened. These DDP viewers can also be used to define and display UDDPs (User Defined Data Points).

The push button in the Instrument Toolbar is used to open a new DDP viewer window. You can close it by clicking the "Close" button at the upper right corner of the window.

DDP array viewer is used to display arrays of DDPs. It can be launched from a DDP viewer’s configuration dialog box. Only one DDP array viewer is supported.

10.2 Configuration

10.2.1 Settings for both DDP and UDDP

Whenever the “DDP Viewer” button in the Instrument Toolbar is clicked, a new DDP Viewer window will be opened. A configuration dialog (see figure below) will pop up on the top of the DDP Viewer window to allow you to enter the configuration first. Parameters to be configured include the DDP to be viewed, the alias of the DDP which will be displayed in the title bar of the DDP Viewer, the high-high, high, low, low-low limits for alarming and their respective background colors. The alarms will be enabled only if the respective checkboxes are ticked. The number of decimal places will be set according to the DDP’s source precision by default. You can change it thereafter.

Every alarm limit can be assigned with a particular alarm sound. The alarm sound can be defined using a WAV file. If no WAV file is configured, a default alarm sound will be used. The alarm sound can be configured to play once or cyclicly when alarm occurs. If the alarm output is enabled, it will be activated when the alarm limit is broken. High-High Limit alarm has a higher priority than High Limit alarm. Low-Low Limit alarm has a higher priority than Low Limit alarm. To prevent different types of alarm sounds from toggling too frequently, a 3 seconds’ hysteresis is used.
10.2.2 Define a UDDP

A UDDP is usually a function of certain DDPs. It gets updated after all DDPs are updated. Each DDP Viewer can be used to define and display one UDDP. For example, DDP Viewers 1 and 16 can be used to define and display UDDP1 and UDDP16 respectively. UDDPs are updated in a predefined order with UDDP1 the first and UDDP16 the last. The earlier-updated UDDPs can be used as variables in the functions that define the later-updated UDDPs.

A UDDP can be expressed as a function of DDPs and earlier-updated UDDPs. The mathematical expression may consist of constants, DDPs, UDDPs, mathematical operators, and mathematical functions. Spaces and Carriage Returns in the expression will be ignored.

Constants must be written in the forms of -x, -x.x, x, or x.x, e.g. –25, -49.55, 38, 71.45. Constants expressed in exponential forms such as 2E10 are not accepted.

DDPs or UDDPs must be referred to using their names bracketed by “[]”, e.g. [Max_A(EU)], [RMS_B(EU)], [UDDP1_(UU)].

Mathematical operators supported are: +, -, *, /, ^, where * represents × and ^ is used to raise a number to the power of an exponent (number ^ exponent). Parentheses “()” can be used to specify the order of operation. Arbitrary nesting of parentheses is allowed.

Mathematical functions supported are listed in the following table. The variables of a
function can be constants, DDPs, UDDPs, or functions. A function can be called recursively.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SIN(x)</td>
<td>Sine of x, where x is in radians</td>
</tr>
<tr>
<td>2</td>
<td>COS(x)</td>
<td>Cosine of x, where x is in radians</td>
</tr>
<tr>
<td>3</td>
<td>TAN(x)</td>
<td>Tangent of x, where x is in radians</td>
</tr>
<tr>
<td>4</td>
<td>SUM(x₁,x₂,...,xₙ)</td>
<td>Sum of x₁, x₂, ... xₙ</td>
</tr>
<tr>
<td>5</td>
<td>LOG(x)</td>
<td>Base-e logarithm of x</td>
</tr>
<tr>
<td>6</td>
<td>LOG10(x)</td>
<td>Base-10 logarithm of x</td>
</tr>
<tr>
<td>7</td>
<td>ABS(x)</td>
<td>Absolute value of x</td>
</tr>
<tr>
<td>8</td>
<td>MAX(x₁,x₂,...,xₙ)</td>
<td>Maximum value of x₁, x₂, ... xₙ</td>
</tr>
<tr>
<td>9</td>
<td>MIN(x₁,x₂,...,xₙ)</td>
<td>Minimum value of x₁, x₂, ... xₙ</td>
</tr>
<tr>
<td>10</td>
<td>POW(x,y)</td>
<td>X raised to a power of y</td>
</tr>
<tr>
<td>11</td>
<td>SQRT(x)</td>
<td>Square root of x</td>
</tr>
<tr>
<td>12</td>
<td>IFGT(x,y,z,w)</td>
<td>If x>y, return z, otherwise return w.</td>
</tr>
<tr>
<td>13</td>
<td>IFGE(x,y,z,w)</td>
<td>If x>=y, return z, otherwise return w.</td>
</tr>
<tr>
<td>14</td>
<td>IFLT(x,y,z,w)</td>
<td>If x<y, return z, otherwise return w.</td>
</tr>
<tr>
<td>15</td>
<td>IFLE(x,y,z,w)</td>
<td>If x<=y, return z, otherwise return w.</td>
</tr>
<tr>
<td>16</td>
<td>IFEQ(x,y,z,w)</td>
<td>If x=y, return z, otherwise return w.</td>
</tr>
<tr>
<td>17</td>
<td>IFNE(x,y,z,w)</td>
<td>If x<>y, return z, otherwise return w.</td>
</tr>
<tr>
<td>18</td>
<td>IFIN(x,l,h,z,w)</td>
<td>If l<=x<=h, return z, otherwise return w.</td>
</tr>
</tbody>
</table>

The unit of a UDDP can be specified by the user. Some UDDP definition examples are shown as follows:

1. Calculate the total dBV value of 8 user defined frequency bands
 Settings:
 - [Spectrum Analyzer Y Scale]: Vrms
 - [Spectrum Analyzer Processing]: Energy in User Defined Frequency Bands

 UDDP1:

 $$20 \times \text{LOG10(SQRT(SUM([fBand1RMS_A(EU)]^2,[fBand2RMS_A(EU)]^2, [fBand3RMS_A(EU)]^2,[fBand4RMS_A(EU)]^2,[fBand5RMS_A(EU)]^2,[fBand6RMS_A(EU)]^2,[fBand7RMS_A(EU)]^2,[fBand8RMS_A(EU)]^2)))}$$

2. DTMF Decoder in a noisy background
 Settings:
 [Spectrum Analyzer Processing]: Peaks with [DeadBand]=50, [Number of Peaks]=6
 It is assumed that the dual tone peaks are among the detected 6 frequency peaks.

 UDDP1:

 IFIN([f1Freq_A(Hz)],692,702,1,0) +
 IFIN([f1Freq_A(Hz)],765,775,2,0) +
 IFIN([f1Freq_A(Hz)],847,857,3,0) +
 IFIN([f1Freq_A(Hz)],936,946,4,0) +
 IFIN([f1Freq_A(Hz)],1204,1214,10,0) +
 IFIN([f1Freq_A(Hz)],1331,1341,20,0) +
 IFIN([f1Freq_A(Hz)],1472,1482,30,0) +
 IFIN([f1Freq_A(Hz)],1628,1638,40,0) +
IFIN([f2Freq_A(Hz)],692,702,1,0) +
IFIN([f2Freq_A(Hz)],765,775,2,0) +
IFIN([f2Freq_A(Hz)],847,857,3,0) +
IFIN([f2Freq_A(Hz)],936,946,4,0) +
IFIN([f2Freq_A(Hz)],1204,1214,10,0) +
IFIN([f2Freq_A(Hz)],1331,1341,20,0) +
IFIN([f2Freq_A(Hz)],1472,1482,30,0) +
IFIN([f2Freq_A(Hz)],1628,1638,40,0) +

IFIN([f3Freq_A(Hz)],692,702,1,0) +
IFIN([f3Freq_A(Hz)],765,775,2,0) +
IFIN([f3Freq_A(Hz)],847,857,3,0) +
IFIN([f3Freq_A(Hz)],936,946,4,0) +
IFIN([f3Freq_A(Hz)],1204,1214,10,0) +
IFIN([f3Freq_A(Hz)],1331,1341,20,0) +
IFIN([f3Freq_A(Hz)],1472,1482,30,0) +
IFIN([f3Freq_A(Hz)],1628,1638,40,0) +

IFIN([f4Freq_A(Hz)],692,702,1,0) +
IFIN([f4Freq_A(Hz)],765,775,2,0) +
IFIN([f4Freq_A(Hz)],847,857,3,0) +
IFIN([f4Freq_A(Hz)],936,946,4,0) +
IFIN([f4Freq_A(Hz)],1204,1214,10,0) +
IFIN([f4Freq_A(Hz)],1331,1341,20,0) +
IFIN([f4Freq_A(Hz)],1472,1482,30,0) +
IFIN([f4Freq_A(Hz)],1628,1638,40,0) +

IFIN([f5Freq_A(Hz)],692,702,1,0) +
IFIN([f5Freq_A(Hz)],765,775,2,0) +
IFIN([f5Freq_A(Hz)],847,857,3,0) +
IFIN([f5Freq_A(Hz)],936,946,4,0) +
IFIN([f5Freq_A(Hz)],1204,1214,10,0) +
IFIN([f5Freq_A(Hz)],1331,1341,20,0) +
IFIN([f5Freq_A(Hz)],1472,1482,30,0) +
IFIN([f5Freq_A(Hz)],1628,1638,40,0) +

IFIN([f6Freq_A(Hz)],692,702,1,0) +
IFIN([f6Freq_A(Hz)],765,775,2,0) +
IFIN([f6Freq_A(Hz)],847,857,3,0) +
IFIN([f6Freq_A(Hz)],936,946,4,0) +
IFIN([f6Freq_A(Hz)],1204,1214,10,0) +
IFIN([f6Freq_A(Hz)],1331,1341,20,0) +
IFIN([f6Freq_A(Hz)],1472,1482,30,0) +
IFIN([f6Freq_A(Hz)],1628,1638,40,0)

UDDP2:
IFEQ([UDDP1(UU)],24,1,0) +
IFEQ([UDDP1(UU)],11,2,0) +
IFEQ([UDDP1(UU)],21,3,0) +
IFEQ([UDDP1(UU)],31,4,0) +
IFEQ([UDDP1(UU)],12,5,0) +
IFEQ([UDDP1(UU)],22,6,0) +
IFEQ([UDDP1(UU)],32,7,0) +
IFEQ([UDDP1(UU)],13,8,0) +
IFEQ([UDDP1(UU)],23,9,0) +
IFEQ([UDDP1(UU)],33,10,0) - 1

UDDP1 is an intermediate variable. UDDP2 will display the decoded DTMF character “0” ~ “9”. “-1” will be displayed otherwise.

10.2.3 Inter-frame Processing

The DDP value will be refreshed accordingly when a new frame of data is sampled. Three options are available for the inter-frame processing of the DDP: None, Linear Average and Exponential Average. It should be noted that the inter-frame processed DDP value is only local to the specific DDP viewer and is not accessible by any other instrument such as Data Logger and Device Test Plan.

10.2.3.1 Linear Average

If Linear Average is selected, the DDP viewer will keep track of the DDP values and only display the averaged value of the specified number of data frames acquired most recently. The number of frames averaged will be displayed in the title bar of the DDP viewer. The average is simply arithmetic mean.

You can specify the number of contiguous frames to be processed. The available options are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200 and forever. You can also enter any number between 1 and 200 manually. When “Forever” is selected, you can reset the process using the Reset button when necessary.

10.2.3.2 Exponential Average

Unlike Linear Average where all data frames used for average are given equal weights, in Exponential Average, the weighting factor for each data frame decreases with time exponentially, giving much more importance to recent observations while still not discarding older observations entirely. The degree of weighting decrease is expressed as a constant \(\alpha \) in percentage. The greater the \(\alpha \), the faster the decrease. Alternatively, \(\alpha \) may be expressed in terms of N, where \(\alpha = \frac{2}{(N+1)} \), and \(\frac{N \times \text{time interval between the start times of two adjacent data frames}}{\text{time constant}} \) is called the time constant.

10.3 Context Menu
DDP Viewer does not have its own menu and view parameter toolbar. Its functions are accessed via its context menu. The context menu pops up when you right click anywhere within the DDP Viewer window. There is only one menu item in the context menu, that is, DDP Viewer Configuration, which has been described in the previous section.

10.4 DDP Array Viewer

There are a few DDP arrays defined in Multi-Instrument, such as `fnFreq_A(Hz)_Array[?], fnRMS_A(EU)_Array[?], fnPhase_A(D)_Array[?], oBandRMS_A(EU)_Array[?]` for Channel A. It is possible to use the DDP viewer to view an element of an array. However, if you want to view the whole array, or a combination of a few arrays, then DDP array viewer should be used instead. To open the DDP array viewer, click the “DDP Viewer” button in the Instrument Toolbar, and then in the pop-up DDP viewer configuration dialog box, click “DDP Array Viewer”. The following configuration dialog box will pop up.

10.4.1 Configuration

A report consists of one or more DDP arrays and/or derived arrays from them. There are 12 preconfigured reports available for selection. It is possible to assign an alias to the report title.

10.4.2 Reports

10.4.2.1 Reports for Harmonic Frequencies, RMS, Phases

Three reports are available for Channel A, Channel B and Channels A&B respectively:

1. A-Harmonic Frequencies, RMS, Phases
2. B-Harmonic Frequencies, RMS, Phases
3. A&B-Harmonic Frequencies, RMS, Phases
Using the above report for Channel A as an example, the five columns are: Order of harmonics, Frequency of harmonics, RMS values of harmonics, Normalized harmonic amplitudes with respect to that of the fundamental (in percentage), Phases of harmonics (of a sine function).

10.4.2.2 Report for RMS values in Octave Bands

Three reports are available for Channel A, Channel B and Channels A&B respectively:

(1) A-Octave Bands, RMS
(2) B-Octave Bands, RMS
(3) A&B-Octave Bands, RMS

Using the following report for Channel A as an example, the two columns are: Octave band center frequencies and RMS values of the octave bands.
10.4.2.3 Report for Peak Frequencies, RMS, Phases

Three reports are available for Channel A, Channel B and Channels A&B respectively:

(1) A-Peak Frequencies, RMS, Phases
(2) B-Peak Frequencies, RMS, Phases
(3) A&B-Peak Frequencies, RMS, Phases

These reports are similar to those harmonic reports described previously except that the peak frequencies here are not necessary to be harmonically related.

10.4.2.4 Report for RMS values in User Defined Frequency Bands

Three reports are available for Channel A, Channel B and Channels A&B respectively:

(1) A-Frequency Bands, RMS
(2) B-Frequency Bands, RMS
(3) A&B-Frequency Bands, RMS
These reports are similar to those reports for RMS values in octave bands described previously except that the frequency bands here are defined freely by the users.

10.4.3 Context Menu

DDP Array Viewer does not have its own menu and view parameter toolbar. Its functions are accessed via its context menu. The context menu pops up when you right click anywhere within the DDP Array Viewer window.

- **DDP Array Viewer Configuration**
 - This has been described in the previous section.

- **DDP Array Viewer Copy As Text**
 - This command copies the data in the report to the clipboard which can be subsequently pasted out into other programs such as Microsoft Excel. Note the data in the clipboard is Tab separated.

- **DDP Array Viewer Export**
 - This command exports the data in the report to a text file which can be imported into third party software such as Microsoft Excel for further processing and analysis.

- **DDP Array Viewer Export As Multi-Tone Configuration File**
 - This option will be enabled in the harmonic / peak analysis reports. It exports the data in the report to a Tone Configuration File (*.tcf) which can be imported into the Multitone Configuration dialog box in order to generate a multitone from the Signal Generator. In other words, a signal can be decomposed into a series of single frequency components, with only their amplitudes and phases recorded in the Tone Configuration File (much smaller in size compared with a WAV file). It can be then reconstructed from that file and regenerated from the Signal Generator.
11 Samples and Templates

Different categories of samples and templates are provided in different subdirectories under the main installation directory of the software. Although these samples and templates are provided for sound card based systems, they can be applied to other hardware systems with or without modifications.

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>..</td>
<td>AudioParameter_SR44100_A.dtp</td>
<td>Single channel audio parameter test plan using a sampling rate of 44100 Hz. It can be used to conduct loop back test for sound card itself.</td>
</tr>
<tr>
<td>..</td>
<td>AudioParameter_SR44100_AB.dtp</td>
<td>Dual channel audio parameter test plan using a sampling rate of 44100 Hz. It can be used to conduct loop back test for sound card itself.</td>
</tr>
<tr>
<td>..</td>
<td>AudioParameter_SR48000_A.dtp</td>
<td>Single channel audio parameter test plan using a sampling rate of 48000 Hz. It can be used to conduct loop back test for sound card itself.</td>
</tr>
<tr>
<td>..</td>
<td>AudioParameter_SR48000_AB.dtp</td>
<td>Dual channel audio parameter test plan using a sampling rate of 48000 Hz. It can be used to conduct loop back test for sound card itself.</td>
</tr>
<tr>
<td>..</td>
<td>HighLowLimit.dtp</td>
<td>Magnitude response against high and low limits.</td>
</tr>
<tr>
<td>..</td>
<td>SteppedSineFrequencyResponseMeasurement_Demo.dtp</td>
<td>Frequency response measurement demo using stepped sine. Note that for demo purpose, a 5513 Hz second order Butterworth low pass digital filter is applied to Channel A by the software, and Channel A and Channel B should be fed with the same signal in order to obtain the frequency response of the low pass filter.</td>
</tr>
<tr>
<td>..</td>
<td>THD+N_THD_SNR_Magnitude_vs_Frequency.dtp</td>
<td>THD+N, THD, SNR, Magnitude vs Frequency Plots measured using frequency stepped sine signals.</td>
</tr>
<tr>
<td>..</td>
<td>SMPTE_IMD_vs_Magnitude_Power.dtp</td>
<td>SMPTE IMD vs Magnitude, Power Plots measured using amplitude stepped dual-sinewave signals.</td>
</tr>
<tr>
<td>..</td>
<td>Crosstalk_vs_Frequency.dtp</td>
<td>Crosstalk vs Frequency Plot measured using frequency stepped sine signal.</td>
</tr>
<tr>
<td>..</td>
<td>HappyBirthDay.dtp</td>
<td>“Happy Birth Day” music.</td>
</tr>
<tr>
<td>..</td>
<td>UDTdefault.dtp</td>
<td>Empty test plan loaded as the default user defined plan.</td>
</tr>
<tr>
<td>..</td>
<td>Zscdefault.dtp</td>
<td>Default sound card input impedance test plan.</td>
</tr>
<tr>
<td>..</td>
<td>LCRdefault.dtp</td>
<td>Default LCR test plan.</td>
</tr>
<tr>
<td>..</td>
<td>LCR_50-10000Hz.dtp</td>
<td>LCR test plan with test frequencies ranging from 50Hz to 10000Hz.</td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>LCR_50Hz.dtp</td>
<td>LCR test plan with test frequency at 50 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_100Hz.dtp</td>
<td>LCR test plan with test frequency at 100 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_200Hz.dtp</td>
<td>LCR test plan with test frequency at 200 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_500Hz.dtp</td>
<td>LCR test plan with test frequency at 500 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_2000Hz.dtp</td>
<td>LCR test plan with test frequency at 2000 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_5000Hz.dtp</td>
<td>LCR test plan with test frequency at 5000 Hz.</td>
<td></td>
</tr>
<tr>
<td>LCR_10000Hz.dtp</td>
<td>LCR test plan with test frequency at 10000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\export</td>
<td>Default directory for data export</td>
<td></td>
</tr>
<tr>
<td>\fcf</td>
<td>Default directory for frequency compensation files.</td>
<td></td>
</tr>
<tr>
<td>A_Weighting.fcf</td>
<td>A weighting frequency compensation file.</td>
<td></td>
</tr>
<tr>
<td>B_Weighting.fcf</td>
<td>B weighting frequency compensation file.</td>
<td></td>
</tr>
<tr>
<td>C_Weighting.fcf</td>
<td>C weighting frequency compensation file.</td>
<td></td>
</tr>
<tr>
<td>\frf</td>
<td>Default directory for frequency response files.</td>
<td></td>
</tr>
<tr>
<td>BandPass_1k-2kHz.frf</td>
<td>Frequency response file for 1 k~2 kHz band pass digital filter</td>
<td></td>
</tr>
<tr>
<td>BandStop_20-80Hz.frf</td>
<td>Frequency response file for 20~80 Hz band stop digital filter</td>
<td></td>
</tr>
<tr>
<td>HighPass_1kHz.frf</td>
<td>Frequency response file for 1 kHz high pass digital filter</td>
<td></td>
</tr>
<tr>
<td>LowPass_1kHz.frf</td>
<td>Frequency response file for 1 kHz low pass digital filter</td>
<td></td>
</tr>
<tr>
<td>\iir</td>
<td>Default directory for IIR coefficient files.</td>
<td></td>
</tr>
<tr>
<td>BandPass_5513-11025Hz_SR44100Hz_Butterworth_IIR_Order12.iir</td>
<td>IIR coefficient file for the 12th order Butterworth 5513~11025 Hz band pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>BandPass_5513-11025Hz_SR44100Hz_Chebyshev_1IR_Order12.iir</td>
<td>IIR coefficient file for the 12th order Chebyshev 5513~11025 Hz band pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>LowPass_5513Hz_SR44100Hz_Butterworth_IIR_Order2</td>
<td>IIR coefficient file for the 2nd order Butterworth 5513 Hz low pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>LowPass_5513Hz_SR44100Hz_Butterworth_IIR_Order12</td>
<td>IIR coefficient file for the 12th order Butterworth 5513 Hz low pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>LowPass_5513Hz_SR44100Hz_Chebyshev_IIR_Order12</td>
<td>IIR coefficient file for the 12th order Chebyshev 5513 Hz low pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>LowPass_5513Hz_SR44100Hz_ParkMcClellan_FIR_Order34.iir</td>
<td>IIR coefficient file for the 34th order Parks-McClellan 5513 Hz low pass digital FIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>HighPass_5513Hz_SR44100Hz_Butterworth_IIR_Order12</td>
<td>IIR coefficient file for the 12th order Butterworth 5513 Hz high pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>HighPass_5513Hz_SR44100Hz_Chebyshev_IIR_Order12.iir</td>
<td>IIR coefficient file for the 12th order Chebyshev 5513 Hz high pass digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>C_Weighting_SR44100Hz_IIR_Order4.iir</td>
<td>IIR coefficient file for the 4th order C weighting digital IIR filter, sampled at 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>C_Weighting_SR48000Hz_IIR_Order4.iir</td>
<td>IIR coefficient file for the 4th order C weighting digital IIR filter, sampled at 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>C_Weighting_SR96000Hz_IIR_Order4.iir</td>
<td>IIR coefficient file for the 4th order C weighting digital IIR filter, sampled at 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>C_Weighting_SR192000Hz_IIR_Order4.iir</td>
<td>IIR coefficient file for the 4th order C weighting digital IIR filter, sampled at 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap2.iir</td>
<td>IIR coefficient file for 2-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap4.iir</td>
<td>IIR coefficient file for 4-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap8.iir</td>
<td>IIR coefficient file for 8-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap16.iir</td>
<td>IIR coefficient file for 16-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap32.iir</td>
<td>IIR coefficient file for 32-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap64.iir</td>
<td>IIR coefficient file for 64-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap128.iir</td>
<td>IIR coefficient file for 128-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>MovingAverageTap256.iir</td>
<td>IIR coefficient file for 256-Tap Moving Average FIR filter</td>
<td></td>
</tr>
<tr>
<td>\log ..</td>
<td>Log file directory for Data Logger</td>
<td></td>
</tr>
<tr>
<td>\psf ..</td>
<td>Default directory for panel setting files.</td>
<td></td>
</tr>
<tr>
<td>MagnitudeFrequencyResponse_SweptSine(0.1~22050Hz,20s).psf</td>
<td>Panel setting file for magnitude frequency response measurement using 20-second 0.1~22050Hz swept sine.</td>
<td></td>
</tr>
<tr>
<td>MagnitudeFrequencyResponse_SweptSine(20~22050Hz,300s)_PeakHold.psf</td>
<td>Panel setting file for magnitude frequency response measurement using 300-second 20~22050Hz swept sine together with peak hold function in Spectrum Analyzer.</td>
<td></td>
</tr>
<tr>
<td>MagnitudeFrequencyResponse_WhiteNoise(InterframeAverage).psf</td>
<td>Panel setting file for magnitude frequency response measurement using white noise together with inter-frame average function in Spectrum Analyzer.</td>
<td></td>
</tr>
<tr>
<td>MagnitudeFrequencyResponse_WhiteNoise(IntraframeAverage).psf</td>
<td>Panel setting file for magnitude frequency response measurement using white noise together with intra-frame average function in Spectrum Analyzer.</td>
<td></td>
</tr>
<tr>
<td>SteppedSineFrequencyResponseMeasurement.psf</td>
<td>Panel setting file for frequency response measurement using stepped sine. To be used with the corresponding test plan.</td>
<td></td>
</tr>
<tr>
<td>SteppedSineFrequencyResponseMeasurement_Demo.psf</td>
<td>Panel setting file for frequency response measurement demo using stepped sine. To be used with the corresponding test plan.</td>
<td></td>
</tr>
<tr>
<td>Zscdefault.psf</td>
<td>Panel setting file for sound card input impedance measurement. To be used with the corresponding test plan.</td>
<td></td>
</tr>
<tr>
<td>LCRdefault.psf</td>
<td>Panel setting file for LCR measurement. To be used with the corresponding test plan.</td>
<td></td>
</tr>
<tr>
<td>ViewWindowFunction_24Bit_1024Points.psf</td>
<td>Panel setting file viewing the characteristics of various Window functions.</td>
<td></td>
</tr>
<tr>
<td>NoiseLevel.psf</td>
<td>Panel setting file for noise level measurement when there is no input signal.</td>
<td></td>
</tr>
<tr>
<td>NoiseLevel_A-Weighting.psf</td>
<td>Panel setting file for A weighted noise level measurement when there is no input signal.</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR44100.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR44100_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR48000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR48000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR48000_FifthOrder.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 48000 Hz. THD is calculated to the fifth order.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR96000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR96000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR192000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT16384_SR192000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 16384 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR44100.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR44100_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR48000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR48000_SingleChannel.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz. Single Channel only.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR48000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR48000_A-Weighting_SingleChannel.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz. Single Channel only.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR48000_FifthOrder.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz. THD is calculated to the fifth order.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR96000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR96000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR192000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>THD_FFT32768_SR192000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 32768 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR44100.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR44100_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR48000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR48000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 48000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR48000_FifthOrder.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 48000 Hz. THD is calculated to the fifth order.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR96000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR96000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 96000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR192000.psf</td>
<td>Panel setting file for THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>\Pro\THD_FFT65536_SR192000_A-Weighting.psf</td>
<td>Panel setting file for A weighted THD, THD+N measurement with FFT size = 65536 and Sampling Frequency = 192000 Hz.</td>
<td></td>
</tr>
<tr>
<td>IMD_CCIF2_19kHz(1)_20kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD CCF2 (19 kHz + 20 kHz, 1:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>IMD_CCIF3_13kHz(1)_14kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD CCF3 (13 kHz + 14 kHz, 1:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>IMD_CCIF3_14kHz(1)_15kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD CCF3 (14 kHz + 15 kHz, 1:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>IMD_CCIF3_15kHz(1)_16kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD CCF3 (15 kHz + 16 kHz, 1:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>IMD_DIN_250Hz(4)_8kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD DIN (250 Hz + 8 kHz, 4:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>IMD_SMPTE_60Hz(4)_7kHz(1)_FFT32768.psf</td>
<td>Panel setting file for IMD SMPTE (60 Hz + 7 kHz, 4:1) measurement with FFT size = 32768</td>
<td></td>
</tr>
<tr>
<td>CrosstalkAB_FFT32768_SR44100.psf</td>
<td>Panel setting file for Crosstalk A->B measurement with FFT size = 32768 and Sampling Frequency = 44100 Hz.</td>
<td></td>
</tr>
</tbody>
</table>
Panel Setting Files

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrosstalkAB_FFT32768_SR48000.psF</td>
<td>Panel setting file for Crosstalk A->B measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>CrosstalkAB_FFT32768_SR96000.psF</td>
<td>Panel setting file for Crosstalk A->B measurement with FFT size = 32768 and Sampling Frequency = 96000 Hz</td>
</tr>
<tr>
<td>CrosstalkAB_FFT32768_SR192000.psF</td>
<td>Panel setting file for Crosstalk A->B measurement with FFT size = 32768 and Sampling Frequency = 192000 Hz</td>
</tr>
<tr>
<td>CrosstalkBA_FFT32768_SR44100.psF</td>
<td>Panel setting file for Crosstalk B->A measurement with FFT size = 32768 and Sampling Frequency = 44100 Hz</td>
</tr>
<tr>
<td>CrosstalkBA_FFT32768_SR48000.psF</td>
<td>Panel setting file for Crosstalk B->A measurement with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>CrosstalkBA_FFT32768_SR96000.psF</td>
<td>Panel setting file for Crosstalk B->A measurement with FFT size = 32768 and Sampling Frequency = 96000 Hz</td>
</tr>
<tr>
<td>CrosstalkBA_FFT32768_SR192000.psF</td>
<td>Panel setting file for Crosstalk B->A measurement with FFT size = 32768 and Sampling Frequency = 192000 Hz</td>
</tr>
<tr>
<td>Octave1.psF</td>
<td>1/1 Octave Analysis</td>
</tr>
<tr>
<td>Octave3.psF</td>
<td>1/3 Octave Analysis</td>
</tr>
<tr>
<td>Octave6.psF</td>
<td>1/6 Octave Analysis</td>
</tr>
<tr>
<td>Octave12.psF</td>
<td>1/12 Octave Analysis</td>
</tr>
<tr>
<td>Octave24.psF</td>
<td>1/24 Octave Analysis</td>
</tr>
<tr>
<td>\Pro\Octave48.psF</td>
<td>1/48 Octave Analysis</td>
</tr>
<tr>
<td>\Pro\Octave96.psF</td>
<td>1/96 Octave Analysis</td>
</tr>
<tr>
<td>BodePlot_WhiteNoise.psF</td>
<td>Bode Plot (transfer function or frequency response) measurement using white noise, with stimulus fed into Channel B and response from DUT fed into Channel A.</td>
</tr>
<tr>
<td>THD+N_THD_SNRF_Magnitude_vs_Frequency.psF</td>
<td>Open the device test plan: THD+N_THD_SNRF_Magnitude_vs_Frequency.dtp.</td>
</tr>
<tr>
<td>THD+N_THD_Magnitude_Power.psF</td>
<td>Open the device test plan: THD+N_THD_Magnitude_Power.dtp.</td>
</tr>
<tr>
<td>SMPTE_IMD_Magnitude_Power.psF</td>
<td>Open the device test plan: SMPTE_IMD_Magnitude_Power.dtp.</td>
</tr>
<tr>
<td>AudioParameter_SR48000_A.psF</td>
<td>Open the device test plan: AudioParameter_SR48000_A.dtp.</td>
</tr>
<tr>
<td>Polarity_Tester.psF</td>
<td>Speaker, microphone and amplifier polarity tester</td>
</tr>
<tr>
<td>Polarity_Tester_withCrestFactorCheck.psF</td>
<td>Speaker, microphone and amplifier polarity tester with crest factor check to confirm the presence of test tone</td>
</tr>
<tr>
<td>PowerFactory_FFT32768_SR48000.psF</td>
<td>Power factor calculation by measuring the voltage and current simultaneously</td>
</tr>
<tr>
<td>\pro\UnweightedPeakWowAndFlutter_10s.psF</td>
<td>Unweighted Peak Wow and Flutter Measurement</td>
</tr>
<tr>
<td>\pro\WeightedPeakWowAndFlutter_10s.psF</td>
<td>Weighted Peak Wow and Flutter Measurement</td>
</tr>
<tr>
<td>\pro\Loudness.psF</td>
<td>Loudness, Loudness Level and Sharpness Measurement</td>
</tr>
<tr>
<td>VTDSO\Impedance_MultiTones_FFT32768_2810E.psF</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement with 32768-point FFT MultiTone stimulus</td>
</tr>
<tr>
<td>VTDSO\Impedance_MultiTones_Octave24_2810E.psF</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement with 1/24 octave MultiTone stimulus</td>
</tr>
<tr>
<td>VTDSO:Impedance_LogSweptSine_Octave96_2810E.psf</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement with frequency logarithmically swept sine stimulus</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Pro:Impedance_MultiTones_FFT65536_SoundCard.psf</td>
<td>Sound Card impedance measurement with 65536-point FFT MultiTone stimulus</td>
</tr>
<tr>
<td>Pro:Impedance_MultiTones_Octave2_4_SoundCard.psf</td>
<td>Sound Card impedance measurement with 1/24 octave MultiTone stimulus</td>
</tr>
<tr>
<td>Pro:Impedance_LogSweptSine_Octave96_SoundCard.psf</td>
<td>Sound Card impedance measurement with frequency logarithmically swept sine stimulus</td>
</tr>
<tr>
<td>\psf:Pro:GedLeeMetric_FFT32768_SR48000_SingleChannel.psf</td>
<td>GedLee Metric measurement in Ch. A with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>\psf:Pro:GedLeeMetric_FFT32768_SR48000.psf</td>
<td>GedLee Metric measurement in Ch. A & B with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>\psf:Pro:Harmonic_FFT32768_SR48000_SingleChannel</td>
<td>Harmonic analysis for Ch. A with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>\psf:Pro:Harmonic_FFT32768_SR48000</td>
<td>Harmonic analysis for Ch. A&B with FFT size = 32768 and Sampling Frequency = 48000 Hz</td>
</tr>
<tr>
<td>\export ..</td>
<td>Default directory for output files</td>
</tr>
<tr>
<td>DacFs200kHz2vMultiTonesAlignedToAdc50kHzFFT32768.txt</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement reference Vo with 32768-point FFT MultiTone stimulus</td>
</tr>
<tr>
<td>DacFs200kHz2vMultiTonesAlignedToAdc50kHzOctave24.txt</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement reference Vo with 1/24 octave MultiTone stimulus</td>
</tr>
<tr>
<td>DacFs200kHz1(6)vLogSweptSineAdc50kHzOctave96.txt</td>
<td>VT DSO-2810E/2820E/2A10E/2A20E impedance measurement reference Vo with frequency logarithmically swept sine stimulus</td>
</tr>
<tr>
<td>\ref ..</td>
<td>Default directory for reference files</td>
</tr>
<tr>
<td>HighLimitRef.ref</td>
<td>High limit reference file</td>
</tr>
<tr>
<td>LowLimitRef.ref</td>
<td>Low limit reference file</td>
</tr>
<tr>
<td>\tcf ..</td>
<td>Default directory for tone configuration files</td>
</tr>
<tr>
<td>IMD_CCIF2_19kHz(1)_20kHz(1).tcf</td>
<td>Tone configuration file for IMD CCIF2 (19 kHz + 20 kHz, 1:1) measurement.</td>
</tr>
<tr>
<td>IMD_CCIF3_13kHz(1)_14kHz(1).tcf</td>
<td>Tone configuration file for IMD CCIF3 (13 kHz + 14 kHz, 1:1) measurement.</td>
</tr>
<tr>
<td>IMD_CCIF3_14kHz(1)_15kHz(1).tcf</td>
<td>Tone configuration file for IMD CCIF3 (14 kHz + 15 kHz, 1:1) measurement.</td>
</tr>
<tr>
<td>IMD_CCIF3_15kHz(1)_16kHz(1).tcf</td>
<td>Tone configuration file for IMD CCIF3 (15 kHz + 16 kHz, 1:1) measurement.</td>
</tr>
<tr>
<td>IMD_DIN_250Hz(4)_8kHz(1).tcf</td>
<td>Tone configuration file for IMD DIN (250 Hz + 8 kHz, 4:1) measurement.</td>
</tr>
<tr>
<td>IMD_SMPTE_60Hz(4)_7kHz(1).tcf</td>
<td>Tone configuration file for IMD SMPTE (60 Hz + 7 kHz, 4:1) measurement.</td>
</tr>
<tr>
<td>OCT1_MultiTone_11.tcf</td>
<td>Tone configuration file for 1/1 octave bands for frequency response measurement</td>
</tr>
<tr>
<td>OCT3_MultiTone_32.tcf</td>
<td>Tone configuration file for 1/3 octave bands for frequency response measurement</td>
</tr>
<tr>
<td>OCT6_MultiTone_63.tcf</td>
<td>Tone configuration file for 1/6 octave bands for frequency response measurement</td>
</tr>
<tr>
<td>OCT12_MultiTone_125.tcf</td>
<td>Tone configuration file for 1/12 octave bands for frequency response measurement</td>
</tr>
<tr>
<td>\wav ..</td>
<td>Default directory for WAV files as well as TXT files of raw data</td>
</tr>
</tbody>
</table>
TextFileImport_SingleChannel.txt A sample TXT file containing raw data of a single channel for File Import command.

TextFileImport_DualChannel.txt A sample TXT file containing raw data of two channels for File Import command.

/window This directory contains the 24-bit 1024-point WAV files for 55 window functions. These wave files can be used to evaluate the characteristics of these window functions.

DacFs200kHz2vMultiTonesAlignedToA dc50kHzFFT32768.wav VT DSO-2810E/2820E/2A10E/2A20E 32768-point FFT MultiTone stimulus for impedance measurement.

DacFs48kHzMultiTonesAlignedToADc48kHzFFT65536.wav Sound Card 65536-point FFT MultiTone stimulus for impedance measurement.

\wfl Default directory for waveform library

heartbeat.wfl A sample arbitrary waveform library file

sine.wfl Sine-shaped waveform library file

sinepulse.wfl Sine-pulse-shaped waveform library file

square.wfl Square-shaped waveform library file

triangle.wfl Triangle-shaped waveform library file

sawtooth.wfl Sawtooth-shaped waveform library file

InvertedSawtooth.wfl Inverted Sawtooth-shaped waveform library file

sinc1.wfl SINC (contains more than 10 peaks) waveform library

sinc2.wfl SINC (contains about 10 peaks) waveform library

J-Test_16Bit.bpl 16 bit J-Test BitPerfect library

J-Test_24Bit.bpl 24 bit J-Test BitPerfect library

SineAtOneFourthFs_16Bit.bpl 16 bit, ¼ sampling frequency sine wave BitPerfect library

SineAtOneFourthFs_24Bit.bpl 24 bit, ¼ sampling frequency sine wave BitPerfect library
12 User Customization and Development

Multi-Instrument provides the following user customizable features:

1. You can save a frequently used panel setting as a Panel Setting File via [Setting]>[Save Current Panel Setting], and load it via [Setting]>[Load Panel Setting] when you need it.

2. You can save your default pane setting via [Setting]>[Save Current Panel Setting as Default]. It will be loaded automatically the next time after software startup. If you do not want unauthorized users to change this default setting, tick “Lock Panel Setting after startup” in the Display Setting dialog which is opened via [Setting]>[Display], and set a password for unlocking panel setting via [Setting]>[Change Password].

 If you tick “Save Current Panel Setting on exit” in the Display Setting dialog, then the software will save the panel setting as default on exit, and load it the next time after software startup.

3. You can configure your frequently use Panel Setting Files in the Hot Panel Setting Toolbar, so that they can be loaded at one single mouse click. If you do not want unauthorized users to change these pre-configured settings, tick “Lock Panel Setting after startup” in the Display Setting dialog which is opened via [Setting]>[Display], and set a password for unlocking panel setting via [Setting]>[Change Password]. In this way, the unauthorized users are only allowed to use these pre-configured panel settings.

4. You can configure, save and load your own device test plan and LCR meter. If you want to load a device test plan automatically at software startup, open the Device Test Plan panel, load the device test plan and press “Save Current Panel Setting as Default” in the Device Test Plan panel.

5. You can hide the toolbars via [Setting]>[Display] and tick the respective checkboxes.

Multi-Instrument provides the following software development features:

1. Multi-Instrument can work as an ActiveX automation server so that an external program can access the data and functions that Multi-Instrument exposes. You can integrate Multi-Instrument into your own software seamlessly via the ActiveX automation server interfaces exposed by Multi-Instrument.

 Please refer to: Multi-Instrument Automation Server Interfaces

The above document and the sample automation client programs in Visual C++, Visual Basic and Visual C# can be found in the AutomationAPIs directory of the software.

2. You can use the vtDAQ and vtDAO interface DLLs supplied in this software to allow your own back-end software to interface to sound cards, NI DAQmx cards, VT DSOs, VT RTAs, etc.. You can also develop your own vtDAQ and vtDAO compatible DLLs to allow Multi-Instrument to interface to your own hardware.

Please refer to: *vtDAQ and vtDAO _Interfaces*

The above document and the sample DAQ and DAO back-end programs in Visual C++, Visual C# and Labview can be found in the DAQDAOAPIs directory of the software.

3. Virtins Technology’s Signal Processing and Analysis (vtSPA) Application Programming Interfaces (APIs) provides a suite of generic APIs for data processing and analysis. It contains some unique features / algorithms originated and only available from Virtins Technology.

Please refer to: *Signal Processing and Analysis (vtSPA) Interfaces*

The above document and the sample programs in Visual C++ can be found in the DAQDAOAPIs directory of the software.

Furthermore, Multi-Instrument is well prepared to be rebranded for OEM services. Its look and feel can be readily changed through configuration without even reprogramming. Contact Virtins Technology if interested.
13 References

1. vtDAQ and vtDAO Interfaces

 Download link:

2. Multi-Instrument Automation Server Interfaces

 Download link:

3. VIRTINS Sound Card Oscilloscope Probe Manual

 Download link:

 Download link:

5. FFT Basics and Case Study using Multi-Instrument

 Download link:

 Download link:

7. EMU Tracker Pre Test Report using Multi-Instrument

 Download link:

 Download link:

9. VT XLR-to-USB Pre Test Report using Multi-Instrument
Download link:

10. EMU 0204 Test Report using Multi-Instrument

Download link:

11. Signal Processing and Analysis (vtSPA) Interfaces

Download link:
14 FAQ

1. **For a sound card based system, is there any test lead or probe associated with the software? How to make the connection to external devices?**

 The dedicated sound card oscilloscope probe can be purchased separately from us. However, if you want to make the probe by yourself, please refer to Section “Input & Output Connection” in the first chapter.

2. **For a sound card based system, how to calibrate the input channel and output channel?**

 The simplest way is to use a multimeter. Please refer to Section “Calibration” in the Oscilloscope chapter for detail. If VIRTINS Sound Card Oscilloscope Probes are used, then you also need to refer to the manual of the probe.

3. **Can I use all instruments such as Oscilloscope, Spectrum Analyzer and Signal Generator simultaneously?**

 Yes. For example, you can use the Signal Generator to generate a test signal to a Device Under Test (DUT), then capture and analyze the response from that device via the Oscilloscope and Spectrum Analyzer simultaneously.

4. **Does the software support external USB sound cards?**

 Yes. It supports any Windows compatible sound cards. You can select the sound card via [Setting]>[ADC Device] or [DAC Device].

5. **Does the software support multiple sound cards in one computer?**

 Yes. Each instance of the software supports the selection of one sound card for input and one for output. The selection is done via [Setting]>[ADC Device] or [DAC Device]. If you run multiple instances of the software, you may select multiple sound cards.

6. **Can I see the generated signal in the Oscilloscope in real time?**

 Yes, you can. Different types of loopback modes are provided in the Signal Generator. Please refer to Section “Loopback Mode” in the Signal Generator chapter for detail.

7. **Can I analyze data that are not directly acquired from the ADC device?**

 Yes. You can use the software to analyze any WAV data or TXT data as long as the required format is followed. Please refer to Sections “Open” and “Import” in the Oscilloscope chapter for detail.

8. **Can it measure DC signal with a sound card?**
It depends on the sound card used. Most of sound card inputs are AC-coupled. There is normally a capacitor in series at the input which blocks DC and very-low-frequency components.

9. Can it output DC signal with a sound card?

No. Almost all sound cards are AC-coupled at their output.

10. When I use a sampling frequency of 96 kHz to generate a 1 kHz sine wave signal via a sound card, the output signal does not seem to be 1 kHz?

This will happen when your sound card does not support the sampling frequency of 96 kHz. Some sound cards do not return an error message when the sampling frequency requested exceeds their capability. Please check your sound card manual to make sure your sound card supports a sampling frequency of 96 kHz before you can use it. An ordinary sound card normally supports a sampling frequency of up to 44.1 kHz.

11. When I use a sampling frequency of 96 kHz to monitor a 1 kHz sine wave signal with a sound card, the spectrum analyzer does not show a peak frequency at 1 kHz?

This will happen when your sound card does not support the sampling frequency of 96 kHz. Some sound cards do not return an error message when the sampling frequency requested exceeds their capability. Please check your sound card manual to make sure your sound card supports the sampling frequency of 96 kHz before you can use it. An ordinary sound card normally supports a sampling frequency of up to 44.1 kHz.

12. How to make the software accessible by different limited user accounts and administrator accounts under Windows NT/2000/XP/2003/Vista/7/8?

The software must be installed and then unlocked by an administrator. It can be accessed by any users including restricted users afterwards.